Optimal leader allocation in UAV formation pairs ensuring cooperation

D. Richert 1, J. Cortés

Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA

1. Introduction

This paper considers pairwise formations between unmanned aerial vehicles (UAVs) where an agent gains a fuel benefit by flying in the wake of another (i.e., a reduction in aerodynamic drag). The objective of each UAV is to travel from source to target locations while consuming the least amount of fuel. UAVs are able to reach their destination alone, however joining in formation can potentially improve their fuel economy. When agents are noncooperative, the potential benefits of flying in formation bring up the issue of fairly distributing the leader task. The goal of this paper is to find optimal cooperation-inducing leader allocations that minimize UAV fuel consumption and provide individual agents with algorithms to compute them. Such benefit-driven cooperation mechanisms are a necessary building block to realize the potential benefits of collaboration in groups of noncooperative agents bargaining over the possibility of teaming up. The results of this paper can be applied to scenarios involving bargaining and auctions, task allocation in teams, and transferable utility games.

Keywords:
Point-to-point UAV reconfiguration
Noncooperative agents
Benefit-driven cooperation
Cooperation-enforcing protocols
Convex restrictions

Abbreviations:
UAV: unmanned aerial vehicle
ACC: American Control Conference
CDC: Conference on Decision and Control
CMMI: Cooperative Multi-Mission Initiative
ACC: American Control Conference

1 This work was partially supported in part by Award FA9550-10-1-0499 and NSF award CMMI-0908508. The material in this paper was partially presented at the 2012 American Control Conference (ACC 2012), June 27–29, 2011, Montréal, Canada and the 51st IEEE Conference on Decision and Control (CDC 2012), December 10–13, 2012, Maui, Hawaii, USA. This paper was recommended for publication in revised form by Associate Editor Giancarlo Ferrari-Trecate under the direction of Editor Ian R. Petersen.
E-mail addresses: dirichert@ucsd.edu (D. Richert), cortes@ucsd.edu (J. Cortés).

Tel.: +1 8587298313; fax: +1 858 822 3107.

© 2013 Elsevier Ltd. All rights reserved.

Available online 27 August 2013

Accepted 11 July 2013

Article history:
Received 10 June 2012
Received in revised form 10 July 2013

A R T I C L E I N F O

A B S T R A C T

This paper considers the problem of optimally allocating the leader task between pairs of selfish unmanned aerial vehicles (UAVs) flying in formation. The UAV that follows the other achieves a fuel benefit. The noncooperative nature of the agents makes it necessary to arbitrate leader-allocation mechanisms that induce collaboration so that the fuel consumption benefits of flying in formation can be realized. Formulated as a nonlinear program, our problem poses two distinct challenges: on the one hand, given a fixed number of leader switches, determine the optimal leader allocation and, on the other, find the optimal number of leader switches. Even though the first problem is nonconvex, we identify a suitable restriction of its feasible set that makes it convex while maintaining the same optimal value. Regarding the second problem, our analysis of the optimal value of the problem as a function of the number of switches allows us to design a search algorithm which is guaranteed to find the solution in logarithmic time. Several simulations illustrate our results.

1 Introduction

This paper considers pairwise formations between unmanned aerial vehicles (UAVs) where an agent gains a fuel benefit by flying in the wake of another (i.e., a reduction in aerodynamic drag). The objective of each UAV is to travel from source to target locations while consuming the least amount of fuel. UAVs are able to reach their destination alone, however joining in formation can potentially improve their fuel economy. When agents are noncooperative, the potential benefits of flying in formation bring up the issue of fairly distributing the leader task. The goal of this paper is to find optimal cooperation-inducing leader allocations that minimize UAV fuel consumption and provide individual agents with algorithms to compute them. Such benefit-driven cooperation mechanisms are a necessary building block to realize the potential benefits of collaboration in groups of noncooperative agents bargaining over the possibility of teaming up. The results of this paper can be applied to scenarios involving bargaining and auctions, task allocation in teams, and transferable utility games.

Literature review. In the cooperative control literature, there are numerous instances of the performance benefits obtained by a group of agents collaborating towards the achievement of a common goal, see e.g. Ren and Beard (2008), Bullo, Cortés, and Martínez (2009), Mesbah and Egerstedt (2010) and references therein. Several works (Marden, Arslan, & Shamma, 2009; Song, Ding, Kamal, Farrel, & Roy-Chowdhury, 2011; Zhu & Martinez, 2013) have also considered situations where individual agents have objective functions of their own that are aligned with a global objective. Less attention has been paid to scenarios where individual agents can carry out their objectives satisfactorily by themselves, yet performance can improve by collaborating with others. In these cases, a critical issue is how to regulate the collaboration among agents in order to enforce fairness when agents are not altruistic. A particular family of such problems is studied in wireless communications in the context of interference, medium access control, and resource sharing (Nokleby & Aazhang, 2010; Nosratinia, Hunter, & Hedayat, 2004; Stirling & Nokleby, 2009). This paper introduces a different family of such problems that involve a group of UAVs flying in formation towards their goals. The energy savings of flying in formation are apparent in flocks of birds (Hummel, 1983; Weimerskirch, Martin, Clerquin, Alexandre, & Jiraskova, 2001). In theory, the same benefits exist for formations among UAVs (Borrelli, Keviczky, & Balas, 2004; Giulietti, Pollini, & Innocenti, 2000). Moreover, recent improvements in technology make it possible to realize these fuel savings (Seanor et al., 2004; Vachon, Ray, Walsh, & Ennix, 2002). Here, we take inspiration from Ribichini and Frazzoli (2003), who study formation creation in groups of UAVs, and we...
examine how collaboration can be enforced among (not necessarily cooperative) agents through appropriately designed protocols. In our model for UAV behavior, agents are incentivized to remain in formation, analogously to marginal cost pricing schemes in game theory, see e.g. Nisan, Roughgarden, Tardos, and Vazirani (2007). Another relevant body of work is that of nonlinear and nonconvex optimization, see e.g. Floudas and Gounaris (2009) and references therein. A common approach to solving a nonconvex problem is to convert it into a convex problem, for which efficient solution methods exist (Bertsekas, Nedic, & Ozdaglar, 2003; Boyd & Vandenberghe, 2004), and then establishing the relationship between the solutions of both problems. Such conversions can be performed by way of relaxations of the constraints or restrictions of the feasible set (Ackmese & Blackmore, 2011). In this paper, we employ the latter approach.

Statement of contributions. Our contributions pertain to the modeling, analysis, and design of UAV formation pairs for optimal point-to-point reconfiguration. Regarding modeling, we introduce the notion of a UAV formation pair as a collection of distances (or leader allocations) in a line along which each one must lead. We also define a cost-to-target function that measures the total fuel consumed along the trajectory. We model the compliance of a UAV to a leader allocation via a parameter, $\epsilon \geq 0$, which quantifies the cost gain that the UAV will forgo before breaking a formation. With these elements, we formulate the problem of finding an optimal leader allocation among those that induce cooperation. This problem is nonconvex in one variable (finding the optimal leader allocation given a fixed number of switches) and combinatorial in the other (finding the optimal number of leader switches). The remaining contributions of the paper concern the analysis of this optimization problem and the design of algorithms that converge to a solution. Our first result builds on a careful characterization of the properties of the objective function and constraints to reformulate the optimization problem as a standard nonlinear program. When switching the lead has no cost, we find the optimal value of the program. This leads us to design the COST REALIZATION ALGORITHM to determine an optimal cooperation-inducing leader allocation. When switching the lead is costly, we restrict the feasible set of leader allocations to mimic those of the solution provided by the COST REALIZATION ALGORITHM. Remarkably, the restriction convexifies the feasible set of the original nonconvex problem while maintaining its optimal value, and its solutions are also feasible. Finally, we establish a quasiconvexity-like property of the optimal value of the problem as a function of the number of leader switches. This property allows us to design the BINARY SEARCH ALGORITHM, which finds the optimal number in logarithmic time. Several simulations throughout the paper illustrate the results.

Organisation. Section 2 formulates the optimal leader allocation problem. Section 3 unveils some key properties of the cost-to-target functions and optimal leader allocations. Sections 4 and 5 deal with the no-cost and costly switching cases, respectively. Section 6 gathers our conclusions and ideas for future work.

2. Problem setup

This section describes the problem setup. After introducing the notions of formation, lead distance, and cost-to-target function, we present the optimization problem we seek to solve. Consider a pair of UAVs with unique identifiers (UIDs) i and j evolving in \mathbb{R}^2. Both i and j have synchronized clocks and can communicate with each other. A superscript i (resp. j) denotes a quantity associated with i (resp. j). Agent i has position $x(t)$ in \mathbb{R}^2, $X \subseteq \mathbb{R}^2$, at time $t \in \mathbb{R}_{\geq 0}$, a target location $x_i \in \mathbb{R}^2$, and the objective of flying from origin $x(0)$ to target location while consuming the least amount of fuel. The same is valid for agent j. For UAVs flying in close proximity, the inter-agent distance between them is negligible compared to the total distance they must travel to their target. Therefore we make the abstraction that i and j are point masses that may have concurrent positions.

2.1. Formations and lead distances

To move from origin to destination efficiently, agents i and j might decide to travel in formation. Here, we formally introduce this notion and examine the associated costs. Without loss of generality (via an appropriate change of coordinate frame), suppose that i and j have rendezvoused at the origin, $x_i = 0$, at time $t = 0$ and are flying in the direction $u = (1, 0, 0)$. Agents i and j are in formation at a time t if

\begin{align*}
(i) \quad x_i(t) &= x_j(t) = x(t), \\
(ii) \quad [x_i(t), x_j(t)] &= [x_i(0), x_j(0)] \in \text{ray}(x_i, u), \\
(iii) \quad d(x(t), x_j(t)) &= 0 \quad \forall t \in [0, t],
\end{align*}

where $\text{ray}(x_i, u)$ is the ray originating at x_i in the direction of u and $d : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}_{\geq 0}$ is the Euclidean distance between two points. The execution of a formation is completely described by a vector of lead distances (VOLD) and the UID of the agent which leads first. Without loss of generality, let i lead the formation first. A VOLD $\ell \in \mathbb{R}^n_{\geq 0}$ is a finite-dimensional vector prescribing which UAV leads the formation when and for how long. For instance, i will initially lead the formation for distance ℓ_i at which point i and j will switch the lead. Upon completion of the leader switch, j will lead the formation for distance ℓ_j. As such, for n odd (resp. even), ℓ_n is the nth distance led by i (resp. j). We use N to denote the cardinality of a VOLD.

A leader switch is a maneuver which takes a distance s to complete, see Fig. 1. During a leader switch, the fuel consumption per unit distance is $\gamma > 1$, and hence, the fuel consumed by both UAVs is $s\gamma$. We have scaled the quantity Γ relative to the fuel consumption per unit distance of leading the formation (which, by assumption, is 1). Conversely, flying in the wake of another UAV reduces the aerodynamic drag on the following UAV. Thus, the relative fuel cost per unit distance of a UAV following is $\gamma < 1$. Flying solo or leading the formation incurs the same fuel consumption per unit distance. Upon completion (or breaking) of the formation, UAVs fly directly to their respective targets. For reasons of presentation, we assume that UAVs are identical in the sense that γ, Γ, and the cost per unit distance of flying solo are the same for all agents. However, the remaining analysis could easily be adapted for agents that are not identical.

2.2. Cost-to-target functions

Here we define an agent’s cost-to-target. To begin we introduce some auxiliary functions. Given a VOLD $\ell \in \mathbb{R}^n_{\geq 0}$, the distance of the nth switch from the origin is

$$D_0(\ell) = \begin{cases} 0, & n = 0, \\ \sum_{k=1}^n \ell_k + (n - 1)s, & 1 \leq n \leq N. \end{cases}$$

The total distance of the formation prescribed by ℓ is $D_N(\ell)$. Likewise, given a VOLD ℓ, the number of leader switches that have been initiated when the UAVs have been in formation for distance $D \geq 0$ is

$$\#_{\text{sw}}(\ell, D) = \max\{n \in \{0, 1, \ldots, N\} : D_n(\ell) \leq D\},$$

and the distance from the last switch is $D_{N}(\ell, D) = D - D_{\#_{\text{sw}}(\ell, D)}$. Given a VOLD and a distance D, a UAV is able to compute the relative fuel consumed on its flight from x_i to its target if it were to break the formation at Du. We refer to it as the UAV’s cost-to-target function. Formally, for agent i, we have $c_i^T(\ell, D) = \sum_{k \in N \cap E} \ell_k + s D_0(\#_{\text{sw}}(\ell, D) - 1) + \gamma \sum_{k \in E} \ell_k + R(\ell, D) + d(Du, \bar{x}),$
2.3. Problem statement

We call c the formation is exists an at the end of their formation in terms of the formation breakaway and By construction, ct_i consumed since the last switch. For #

Lastly, the $d(D_u, \tilde{x})$ is the fuel that i would consume by breaking the formation at Du and flying to its target. Slight variations of a UAV’s cost-to-target are the cost-to-target-at-the-kth-switch functions. For $k = 1, \ldots, N$, these are given by

$$ct_k^i : \mathbb{R}^k \to \mathbb{R}_{>0}$$

defined as

$$ct_k^i(\ell_1, \ldots, \ell_k) = \sum_{n \neq k}^{\infty} \ell_n + \gamma \sum_{n \in \mathbb{N} \cap [k, \infty)} \ell_n + s(\Gamma - 1) u, \tilde{x}.$$

By construction, $ct_k^i(\ell, D_k(\ell)) = ct_k^i(\ell_1, \ldots, \ell_k)$. Analogous ct_j^k and ct_k^i exist for j. In addition to an individual UAV’s cost-to-target, it is possible to characterize the combined cost-to-targets of i and j at the end of their formation in terms of the formation breakaway location. To do so, consider any $c_i^1, c_j^1 \in \mathbb{R}_{>0}$ and suppose there exists an $\ell \in \mathbb{R}_{>0}$ such that $c_i = ct_N^i(\ell)$ and $c_j = ct_N^j(\ell)$ (i.e., the final cost-to-target at the end of the formation for i and j are c_i and c_j respectively). The UAV’s combined cost-to-targets at the end of the formation is $c_i + c_j = ct_N^i(\ell) + ct_N^j(\ell)$.

Under a change of variables $L = \sum_{k=1}^{N} \ell_k$ this becomes

$$c_i + c_j = ct_{\infty}^{ij}(L) := (1 + \gamma)L + 2(N - 1)s\Gamma$$

$$+ d((L + s(N - 1)) u, \tilde{x})$$

$$+ d((L + s(N - 1)) u, \tilde{x}).$$

We call $ct_{\infty}^{ij} : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ the combined cost-to-target function of a formation with $N - 1$ switches. Note that the formation breakaway distance is $L + s(N - 1)$.

2.3. Problem statement

Upon arrival at the rendezvous location x_0, agents need to determine a VOLD to dictate how to execute their formation. Suppose i declares an upper bound c_i on its final cost-to-target. Then j would propose a VOLD which solves the following two-stage optimization problem. First, among VOLDS with a fixed cardinality N, the minimum cost-to-target j can expect is

$$\min_{\ell \in \mathbb{R}_{>0}} \text{ct}_{N}^j(\ell)$$

s.t.

$$c_i \geq \text{ct}_{N}^i(\ell),$$

$$\text{ct}^i(\ell, D) \leq \text{ct}^i_{N}(\ell) + \epsilon_i, \quad \forall D \in [0, D_N(\ell)].$$

The parameters $\epsilon_i, \epsilon_j \geq 0$, intrinsic to each UAV, model their degree of cooperation (see Remark 2.1). Constraint (1c) ensures that at no point in the formation will j’s cost-to-target be ϵ_j less than its final cost-to-target. The assumption is that i would break the formation earlier if it could benefit (by more than ϵ_j) in doing so. An analogous reason for j motivates (1d). The optimal value of (1c) is denoted $C_i^j(N)$. Next, among all VOLDS (of any number of leader switches), the minimum cost-to-target that j could expect is

$$\min_{N \in \mathbb{N} \cup \{0\}} C_i^j(N).$$

If $N^* \text{minimizes (2)}$ and $\ell^* \text{minimizes (1)}$ for fixed N^*, then j would propose ℓ^* to i. For reasons of notation, let $F(N)$ be the feasible set of (1). In general, $\mathcal{F}(N)$ is nonconvex and (2) is combinatorial. We devote much of this paper to transforming (1) into a convex program (i.e., a convex objective function minimized over a convex set) and developing tools to efficiently solve (2).

From this point on, we assume that the formation heading is not in the same direction as either agents’ target, $\tilde{x} \not\in \text{ray}(x_i, u)$ and/or $\tilde{x} \not\in \text{ray}(x_j, u)$.

Without this assumption, inducing cooperation between i and j is trivial: if a UAV cannot “breakaway” from the formation, the other UAV will just follow in the formation until it no longer benefits from doing so.

Remark 2.1 (Selfish vs. Fully Cooperative UAVs). If $\epsilon_i = \epsilon_j = 0$, constraints (1c)–(1d) imply that i and j only abide by VOLDS for which their cost-to-target at any time in formation is never better than their cost-to-target at the end of the formation. We call such UAVs selfish. For selfish UAVs, the solution to problem (1) is trivially $\ell^* = 0 \in \mathbb{R}^N$ for any N (agents never fly in formation). This is because neither UAV is willing to be the last to lead the formation compared to flying straight to its target. On the other hand, removing (1c)–(1d) (equivalently, setting $\epsilon_i = \epsilon_j = \infty$) implies that UAVs will abide by any VOLD $\ell \in \mathbb{R}^N$. We call such UAVs fully cooperative. However, these UAVs could potentially save fuel by breaking the formation earlier. This discussion motivates our problem formulation, which accounts for agents who are selfishly motivated yet willing to forfeit a small amount of fuel to ensure the formation occurs. Fig. 2 shows the dependency of C_i^j on ϵ_i, ϵ_j.

3. Unveiling the structure of optimal VOLDS

This section describes properties of the cost-to-target functions and of the solutions to (1). Using them, we provide a more explicit
3.1. Properties of the cost-to-target functions

A cost-to-target function is continuous and piecewise differentiable with respect to distance D. In particular, ct' is not differentiable at distances where leader switches are initiated or completed. That is, ∂_0ct' exists at (ℓ, D) iff $D_{i0}(\ell, D) \notin [0, s]$. The following reveals a useful convexity-like property of the cost-to-target functions.

Lemma 3.1 (Leading, Following, and Switching Become More Costly as the Formation Progresses). Let ℓ be a VOLD and $D_1 < D_2$. Suppose that, under ℓ, UAV i is leading (or following, or switching) at both D_1u and D_2u. Then $\partial_0ct'(\ell, D_1) < \partial_0ct'(\ell, D_2)$. Moreover, if i is leading or switching at D_1u, then $\partial_0ct'(\ell, D_1) > 0$.

Proof. The derivative of ct' with respect to D is

$$\partial_0ct'(\ell, D) = \partial_0d(Du, \vec{x}) + \begin{cases} y, & \text{if i follows at Du}, \\ 1, & \text{if i leads at Du}, \\ \Gamma_i, & \text{otherwise}. \end{cases}$$

The function $D \mapsto d(Du, \vec{x})$ is strictly convex under (3). Thus, $\partial_0d(Du, \vec{x})$ is strictly increasing. Suppose that i is leading at both D_1u and D_2u. Then

$$\partial_0ct'(\ell, D_1) = \partial_0d(D_1u, \vec{x}) + 1 < \partial_0d(D_2u, \vec{x}) + 1 = \partial_0ct'(\ell, D_2).$$

A similar analysis holds for when i is following (or switching) at both D_1u and D_2u. To show that $\partial_0ct'(\ell, D_1) > 0$ when i is leading at D_1u, let $a > 0$ be sufficiently small such that i is also leading at $(D_1 - a)u$. Then

$$ct'(\ell, D_1) = ct'(\ell, D_1 - a) - d((D_1 - a)u, \vec{x}) + a + d(D_1u, \vec{x}) > ct'(\ell, D_1 - a),$$

where we have used the triangle inequality. Since a can be taken arbitrarily small, $\partial_0ct'(\ell, D_1) > 0$ follows. If i is switching at D_1u, the above argument with Γ_i a instead of a, together with $\Gamma_i > 1$, yields the same conclusion.

Roughly speaking, Lemma 3.1 states that it is more costly to lead (or follow or switch) in the formation as it progresses. The last statement in Lemma 3.1 simply states that leading or switching is always costly. This is to be distinguished from the following which, as we show later, decreases the cost-to-target function in an optimal VOLD. Using a similar argument as in the proof of Lemma 3.1, the following states some properties of the cost-to-target-at-the-kth-switch functions.

Lemma 3.2 (Properties of the Cost-to-Target-at-the-k-th-Switch Functions). For $\ell \in \mathbb{R}^N_{\geq 0}$

(P1) $\partial_1ct_k^\ell(\ell_1, \ldots, \ell_k) > 0$, for $k \geq 1$,

(P2) $\partial_1ct_k^\ell(\ell_1, \ldots, \ell_k) > 0$, for $k \geq 2$,

(P3) $\partial_0ct_k^\ell(\ell_1, \ldots, \ell_k) = \partial_{n+2}ct_k^\ell(\ell_1, \ldots, \ell_k)$, for $k \geq n + 2$ and $m = i, j$,

(P4) $\partial_0ct_k^\ell(\ell_1, \ldots, \ell_k) < \partial_{n+2}ct_k^\ell(\ell_1, \ldots, \ell_k)$, for $k \geq n + 2$ and $m = i, j$.

3.2. Properties of the optimal VOLDSs

This section explores an important property of the breakaway distance prescribed by a solution to (1). For some $\ell \in \mathbb{R}^N_{\geq 0}$ let $c^\ell = ct_1^\ell(\ell)$ and $c^1 = ct_1^1(\ell)$. Recalling the discussion on the combined cost-to-target function (cf. Section 2.2), the possible breakaway locations of the formation can be described by all L satisfying $c^1 + c^\ell = ct_k^\ell(L)$. Since ct_k^{i+1} is strictly convex, there exist two solutions L_1, L_2 to this equation (note that L_1, L_2 may not be distinct). Letting $L_N^* = \text{argmin}_{L \in \mathbb{R}^N} ct_k^{i+1}(L)$, we assume without loss of generality that $L_1 \leq L_N^* \leq L_2$. The following result states that $L_1 + s(N - 1)$, and not $L_2 + s(N - 1)$, is the breakaway location for a solution to (1).

Proposition 3.3 (UAVs Breakaway as soon as Possible). For $N \in \mathbb{N}$, let $\ell^* = L_1$ be a solution to (1). Then,

$$\ell^* \in L_N := \left\{ \ell \in \mathbb{R}^N_{\geq 0} : \sum_{k=1}^N \ell_k \leq L_N^* \right\}.$$

Proof. Consider the case when N is even so that j leads the last segment. Proving the result by contradiction, suppose ℓ solves (1) but $\sum_{k=1}^N \ell_k = L > L_N^*$. Since ct_N^{i+1} is strictly convex, we know $\partial_0ct_N^{i+1}(L) > 0$. That is

$$\gamma + \partial_d((L + s(N - 1))u, \vec{x}) > -\partial_d((L - s(N - 1))u, \vec{x}).$$

In other words, $\partial_1ct_N^1(\ell) > -\partial_1ct_N^1(\ell)$. A rearrangement of (4) reveals that $\partial_0ct_N^1(\ell) > -\partial_0ct_N^1(\ell)$. Consider the alternative VOLD $\ell' \in \mathbb{R}^N_{\geq 0}$ where, for some $a, b \geq 0$ to be designed, $\ell_{k+1} = \ell_{k-1} - a$, $\ell_{N} = \ell_{N-1} - b$, and $\ell_0 = \ell_1$. Otherwise, to reach a contradiction of ℓ being a solution of (1), we want to design a, b such that $ct_N^1(\ell') \leq ct_N^1(\ell)$, $ct_N^1(\ell') < ct_N^1(\ell)$ satisfies (1c)-(1d). First, let a, b be sufficiently small such that the following linear approximations are valid. We desire

$$a\partial_{i_{N-1}}ct_N^1(\ell) + b\partial_{j_{i_{N-1}}}ct_N^1(\ell) > 0. \quad (5a)$$

$$a\partial_{i_{N-1}}ct_N^1(\ell) + b\partial_{j_{i_{N-1}}}ct_N^1(\ell) \geq 0. \quad (5b)$$

There are four cases: (i) $\partial_1ct_N^1(\ell) > 0$ and $\partial_0ct_N^1(\ell) > 0$ (ii) $\partial_1ct_N^1(\ell) > 0$ and $\partial_0ct_N^1(\ell) < 0$ (iii) $\partial_1ct_N^1(\ell) < 0$ and $\partial_0ct_N^1(\ell) > 0$ (iv) $\partial_1ct_N^1(\ell) < 0$ and $\partial_0ct_N^1(\ell) < 0$. For the sake of space, consider only case (iv) which we claim is the most complex. Combining (5) yields

$$\partial_{i_{N-1}}ct_N^1(\ell) < a < -\partial_{i_{N-1}}ct_N^1(\ell).$$

Given $a > 0$, $3b > 0$ since $\partial_{i_{N-1}}ct_N^1(\ell) > -\partial_{i_{N-1}}ct_N^1(\ell)$ and $\partial_{i_{N-1}}ct_N^1(\ell) > -\partial_{i_{N-1}}ct_N^1(\ell)$. It remains to show that ℓ' satisfies (1c)-(1d). Consider first the interval $D \in [0, D_{N-1}(\ell')]$ where, by construction of ℓ', $ct(\ell', D) = ct(\ell, D)$. Since ℓ satisfies...
3.3. Equivalent formulation

Here, we combine the results established above to reduce the feasibility set of (1) to only those VOLDs exhibiting properties of optimal VOLDs. In particular, Lemma 3.1 and Corollary 3.4 reveal that, for \(\ell \in \mathbb{L}_N \), the local minima of \(\partial^i \) and \(\partial^j \) occur at the distances where an agent initiates a switch from following to leading.

So, if cooperation is induced at those points, then cooperation is induced for the entire formation. Additionally, we can now fix \(i \)'s final cost-to-target at \(C_i \). To summarize, we reformulate (1) in terms of the cost-to-target-at-the-kth-switch functions as follows. For fixed \(N \in \mathbb{N} \)

\[
\begin{align*}
\min_{i \in \mathbb{N}} \ c^i_N(\ell) & \quad (6a) \\
\text{s.t.} \quad c^i = c^i_N(\ell), \quad C_i = c^i_N(\ell), \quad (6b) \\
C^i \leq c^i_N(\ell_1, \ldots, \ell_k) + e^i, & \quad k \in \mathbb{O}_{1,N-1}, \quad (6c) \\
C^i \leq c^i_N(\ell_1, \ldots, \ell_k) + e^i, & \quad k \in \mathbb{O}_{2,N-1}, \quad (6d)
\end{align*}
\]

Given the above discussion, the set of solutions to (6) is the set of solutions to (1). The equality constraints in (6) are not affine and substituting them into the inequality constraints yields nonconvex inequality constraints.

Remark 3.7 (Total Lead Distance Functions). For \(\ell \in \mathbb{L}_N \) satisfying (6b)–(6d), one can show that, without knowing the specific elements of \(\ell \), there exists a unique distance that \(i \) must lead the formation. This is

\[tL^i_N(c^i) = \left[L + d((L + (N - 1)s)u, x^i) \right] + (N - 1)sI - c^i]/(1 - \gamma) = \sum_{k \in \mathbb{N} \setminus \{0\}} \ell_k, \]

where \(L \) satisfies \(c^i + C^i = c^i_N(\ell) \) (cf. \(tL^i_N(\ell) \) is well-defined since \(L \) is unique). Also, \(tL^i_N(c^i) = L - tL^i_N(c^i) \).

4. Optimal VOLDs under no-cost switching

This section solves problem (2) when switching the lead does not incur a cost to UAVs (i.e., \(s = sI = 0 \)). We start by characterizing the optimal value \(C_i \) and then design the COST REALIZATION ALGORITHM to generate a VOLD that realizes the optimal fuel consumption of UAV \(j \) in the formation. Note that, under no-cost switching

\[c^i_N(\ell) = c^i_N(\ell), \quad \forall N', N'' \in \mathbb{N}. \]

This can be interpreted as follows. Given a fixed breakaway location (in this case, \(L \) because \(s = 0 \)) and \(i \)'s cost-to-target, the final cost-to-target for \(j \) is independent of the number of leader switches in the VOLD. Based on this observation, we are able to prove the following.

Theorem 4.1 (Optimal Value Under no-cost Switching). For \(s = 0 \), \(\max(e^i, e^j) > 0 \), and any \(N \geq 2 \), \(C^i \) is the optimal value of the convex problem

\[\min_{\ell} (c^i_N(\ell) - C^i). \]

Proof. The proof is constructive. For \(s = 0 \), let \(e^i = \min_i c^i_N(\ell_0) - C^i \) for any \(N \geq 2 \) and for brevity, let \(\ell_i = tL^i_N(e^i) \) and \(\ell_j = tL^j_N(e^i) \) (cf. Remark 3.7). Begin with the VOLD \(\ell = (\ell^i, \ell^j) \). If \(\ell \) is not feasible then it must be that \(c^i_N(\ell^i) < C^i - e^i \). By assumption, \(c^i_N(0) > c^i - e^i \). Therefore, by the intermediate value theorem, there exists a \(\ell_1 \in (0, \ell^i) \) such that \(c^i_N(\ell_1) = c^i - e^i \). With a slight abuse of notation, let \(\ell = (\ell_1, \ell_1, \ell_1 - \ell_1) \). Then, because the breakaway distance has been preserved, \(i \) and \(j \) still realize their costs of \(C^i \) and \(e^j \), respectively. Again, if \(\ell \) is not feasible, then it must be that \(c^j_N(\ell_1, \ell_1) < C^j - e^j \) and, by the intermediate value theorem, there exists a \(\ell_2 \in (0, \ell^j) \) such that \(c^j_N(\ell_2, \ell_2) = C^j - e^j \). Then, update \(\ell = (\ell_1, \ell_2, \ell_1 - \ell_1, \ell_1 - \ell_2) \). This process may be
repeated as long as ℓ is not feasible. If it never happens that ℓ is feasible, this implies that $\ell_k \rightarrow 0$ (we view ℓ_k as a sequence which is bounded and monotonic). This further implies that there exists a $L := \sum_{k=0}^{\infty} \ell_k$ such that $C^*-e^* + C^*-e^* = c(t^*)^\infty(L)$. However, if $\max(e^*, e^*) > 0$, this contradicts ℓ^* being the optimal value of (7). Therefore, it must be that for some finite number of steps, ℓ becomes feasible under the proposed procedure. □

The above result establishes that the optimal value of (2) under no-cost switching can be found as the optimal value of a simple convex problem. This result is useful for j as it is able to know a priori what final cost-to-target it can expect from a formation with i. However, i and j still do not know how to realize these cost-to-targets. The cost realization algorithm provided in Fig. 3 resolves this issue. Its design is inspired by the constructive proof of Theorem 4.1. Agents i and j implement this algorithm on-the-fly while in formation and only require knowledge of the optimal value to (2).

Corollary 4.2 (Inducing Optimal Solutions: No-Cost Switching). For $s \Gamma = 0$ and input C^\ast, the cost realization algorithm induces a VOLD that solves (2).

Fig. 4 reports the cost-to-targets in a simulation of two UAVs flying from origin to target locations while implementing the cost realization algorithm. A leader switch is triggered when an agents’ cost-to-target transitions from increasing to decreasing (or vice versa). As one can see, the cost realization algorithm schedules a leader switch whenever one of the agents’ cost-to-target reaches e below the projected final cost-to-target.

Remark 4.3 (Robustness of the Cost Realization Algorithm). Small measurement, modeling (i.e., unmodeled wind effects), and computational uncertainties result in small perturbations to an agent’s final cost-to-target resulting from the cost realization algorithm. Thus, for e^i (resp. e^j) sufficiently large, i (resp. j) is willing to remain in formation despite these perturbations to its expected final cost-to-target. In this sense, the parameters e^i and e^j ensure that the cost realization algorithm is robust to small uncertainties.

5. Optimal VOLDS under costly switching

This section solves problem (2) when switching is costly. The key difference with respect to Section 4 is that, under no-cost switching, whenever an inequality constraint in (6) becomes active, agents can initiate a leader switch to ensure cooperation is maintained without affecting their final cost-to-targets. However, under costly switching, the same logic does not hold because adding a leader switch increases the final cost-to-target of both agents.

5.1. Convex restriction

We start by restricting the feasible set of (6) to VOLDS that exhibit the same structure as in the no-cost case (i.e., equality constraints for $k = 1, \ldots, N - 2$). That is,

$$\begin{align*}
\min_{c^j} & \quad c^j \\
\text{s.t.} & \quad c^j = c(t^j_1, \ldots, t^j_k) + e^j, \quad k \in \mathbb{O}[1, N-2], \\
& \quad c^j = c(t^y_1, \ldots, t^y_k) + e^j, \quad k \in \mathbb{E}[2, N-2], \\
& \quad c^j = c(t^j_1, \ldots, t^j_k), \\
& \quad c^j = c(t^y_1, \ldots, t^y_k), \\
& \quad \ell \in \mathbb{L}_N, \\
& \quad c^j \leq c(t^j_{N-1}, \ldots, t^j_{N-1}) + e^j, \quad N \in \mathbb{E}, \\
& \quad c^j \leq c(t^y_{N-1}, \ldots, t^y_{N-1}) + e^j, \quad N \in \mathbb{O}. \\
\end{align*}$$

(8a)-(8h)

Given (8b)-(8e) define a unique ℓ. Thus, the variable of optimization is now c^j. Constraints (8g)-(8h) ensure that the entire VOLD induces cooperation. Denote the set of feasible c^j in the above problem by $\mathcal{F}(N)$ and the optimal value by $C^\ast(N)$. In general, for any given $N \in \mathbb{N}$ and optimal value $C^\ast(N)$, one has $C^\ast(N) \geq C^\ast(N)$. However, for some N, we have $C^\ast(N) = C^\ast$.

Theorem 5.1 (Restriction is Exact). Let $C^\ast < \infty$ be the optimal value of (2). Then there exists an $N \geq 2$ such that $C^\ast(N) = C^\ast$.

Proof. Let N be a minimizer of (2) and suppose ℓ is a solution of (6) for fixed N. Our method is to build a new VOLD, t' satisfying (8b)-(8e), from ℓ. Initially, set $t' = \ell$ and let $k_0 \in [1, N - 2]$ be the smallest k such that one of the constraints (6c)-(6d) is not active when evaluated at t'. Assume k_0 is odd, so $C^\ast - e^j < c(t^j_{k_1}, \ldots, t^j_{k_0})$. Increase $t^j_{k_0}$ and decrease $t^j_{k_0+2}$ at the same rate until $C^\ast - e^j = c(t^j_{k_1}, \ldots, t^j_{k_0})$ (this is possible due to (P5)). After performing this procedure, the k_0 constraint is active, the RHS of the $k_0 + 1$ constraint has increased in value (see (P1) and (P3)), and all other constraint functions have maintained their original value (thus, the final cost-to-go for i and j have also remained at C^\ast and C^\ast respectively). Thus, ℓ' still solves (6). Next, we focus on the $k_0 + 1$ constraint whose RHS has increased in value and thus $C^\ast - e^j < c(t^j_{k_1}, \ldots, t^j_{k_0+1})$. Again, increase $t^j_{k_0+1}$ and decrease $t^j_{k_0+3}$ at the same rate until the $k_0 + 1$ constraint becomes active. We are able to repeat this procedure until the $N - 1$ constraint is reached. It is not possible to make this constraint active using the same procedure because there is no $t^j_{k_0+1}$ component to decrease. Therefore, once the $N - 1$ constraint is reached, t' satisfies (8b)-(8e). One point of concern in the proposed procedure occurs if, when decreasing (say) $t^j_{k_0+2}$, it happens that $t^j_{k_0+2} \leq 0$. However, in this event, one can show that N is not a minimizer of (2); a new VOLD with one less leader switch can be constructed that decreases the objective function and satisfies the constraints. □
where (P4) has been used. The LHS (resp. RHS) of a
Or, in other words
from which we see that
The inequality is strict iff (8g) is feasible for
Or, in other words
where (P4) has been used. The LHS (resp. RHS) of (9) represents the increase in the LHS (resp. RHS) of (8g). Thus, (8g) remains satisfied by increasing c'. Therefore, by increasing c' the only constraint one may violate is \(\ell \in \mathbb{R}_{\geq 0} \cap \Lambda_N \). However, increasing c' further decreases each \(\ell_i \). Thus, \(\mathcal{F}_c(N) \) must be convex. \(\Box \)

By Theorem 5.3, given \(N \in \mathbb{N} \), the optimal value of (8) can be efficiently found under costly switching. Note that the restriction to the feasible set does not limit the type of real-world scenarios that we can solve. Moreover, the solution of (8) maximizes the distance between switches. From an implementation point of view, this is a desirable and robust switching protocol because UAVs are not required to perform switching maneuvers arbitrarily fast. To find the optimal value of (2), we next study how to determine the optimal number of leader switches.

5.2. Optimal number of leader switches

Here, we identify a criterion that allows us to determine an optimal N and helps us search for it. The following result provides such a criterion via a quasiconvexity-like property of \(C_i^j(N) \). Fig. 5 illustrates Theorem 5.4.

Theorem 5.4 (Certificate for Optimal Number of Switches). For \(N \in \mathbb{N} \), the following statements hold

(i) if adding two switches increases (8)
\[C_i^j(N) < C_i^j(N + 2), \]
then adding any more multiple of two switches also increases it
\[C_i^j(N + 2k) < C_i^j(N + 2(k + 1)), \quad \forall k \in \mathbb{N}. \]
The inequality is strict iff (8) is feasible for \(N + 2k \).

(ii) if removing two switches increases (8)
\[C_i^j(N) < C_i^j(N - 2), \]
then removing any more multiple of two switches also increases it
\[C_i^j(N - 2k) < C_i^j(N - 2(k + 1)), \quad \forall k \leq N/2 - 2. \]
The inequality is strict iff (8) is feasible for \(N - 2k \).

Proof. The result follows from the combination of:

(S1) If \(C_i^j(N) < C_i^j(N + 2) \) for some \(N \in \mathbb{N} \), then \(C_i^j(N) \leq C_i^j(N + 2k) \) for all \(k \in \mathbb{N} \). The inequality is strict iff (8) is feasible for \(N + 2k \).

(S2) If \(C_i^j(N) < C_i^j(N - 2) \) for some \(N \in \mathbb{N} \), then \(C_i^j(N) \leq C_i^j(N - 2k) \) for all \(k \in \mathbb{N} \) such that \(k \leq N/2 - 2 \). The inequality is strict iff (8) is feasible for \(N - 2k \).
Suppose \(N \) is even. Consider first (S1). If \(\hat{C}(N) < \hat{C}(N + 2) \) then
\[
\hat{C}(N) \neq \mathcal{F}_r(N + 2).
\]
That is, for \(N + 2 \) and \(c^i = \hat{C}(N) \), either (S1.1) constraints (8b)–(8f) are violated or (S1.2) the constraint (8g) is violated.

Consider (S1.1). Let \(i_{\text{max}}(N) \) be the minimum \(c^i \) such that (8b)–(8f) are satisfied for \(N \). As per the analysis in the proof of Theorem 5.3, \(\hat{c}_{\text{max}}(N) \equiv \min c_{\text{opt}}^{i_{\text{max}}}(N) - c^i \). By the properties of \(c_{\text{opt}}^{i_{\text{max}}}(N) \), it follows that \(\hat{c}_{\text{min}}(N) < c_{\text{min}}(N + 2k) \) for any \(k \in \mathbb{N} \). Therefore, if (S1.1) is true, this means that \(\hat{C}(N) \neq \mathcal{F}_r(N + 2k) \Rightarrow \hat{C}(N) < \hat{C}(N + 2k) \) and this would prove (S1).

Consider (S1.2). Let \(\hat{e}_N^i \) (resp. \(\hat{e}_{N+2}^i \)) satisfy (8g) for \(\hat{C}(N) \) and \(N \) (resp. \(N + 2 \)) (resp. \(N + 4 \)). We know \(\hat{e}_k^{N+2} = \hat{e}_k^N \) for \(k = 1, \ldots, N - 1 \). Denote \(\hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 2) = \hat{e}_N^N + a \). Note that
\[
\hat{c}_{\text{opt}}^{i_{\text{max}}}(N) = \hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 2), \ldots, \hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 2) + a.
\]
so \(a > 0 \). Also, because (8g) is violated
\[
\hat{C}(N) > \hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 1, \ldots, \hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 2) + a).
\]
Therefore, the conditions of Lemma A.1 are satisfied and \(\hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 2) > \hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 4) \). Since \(J \) leads last, this means that \(\hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 2) < \hat{c}_{\text{opt}}^{i_{\text{max}}}(N + 4) \). Recalling (11), the above means that (8d) is violated. As a final step to creating \(\hat{e}_N^i \), employ the strategy as in the proof of Theorem 5.1: decrease \(\hat{e}_N^i \) and increase \(\hat{e}_N^{i+1} \) by the same amount until (8d) is satisfied. However, increasing \(\hat{e}_N^i \) further violates (8d). Therefore, \(\hat{C}(N) < \hat{C}(N + 4) \). We can repeat this process for \(N + 6 \) and so on to attain the desired result. So long as (8b)–(8f) are satisfied for \(\hat{C}(N) \) and \(N + 2k \), the above construction is valid. However, if \(\hat{C}(N + 2) = \infty \), recall (S1.1). Then \(\hat{C}(N + 2k) = \infty \) for all \(k \). This completes the proof of (S1).

Next, we prove (S2). Let \(\hat{e}_N^i \) (resp. \(\hat{e}_{N+2}^i \)) satisfy (8g) for \(\hat{C}(N) \) and \(N \) (resp. \(N - 2 \)) (resp. \(N - 4 \)). To reach a contradiction, suppose
\[
\hat{C}(N - 4) \leq \hat{C}(N) < \hat{C}(N - 2).
\]
First, let \(a > b > 0 \) be such that
\[
\hat{e} \leq \hat{c}_{\text{opt}}^{i_{\text{max}}}(N, \ldots, \hat{c}_{\text{opt}}^{i_{\text{max}}}(N - 2) - a).
\]
Let \(l = \sum_{k=1}^{N-2} \hat{e}_k^{N-2} - a \). If \(\hat{e} \geq \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N, \ldots, \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N - 2) - a) \) then \(\hat{c} \hat{C}(N) > \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N, \ldots, \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N - 2) - a) \) (i.e., the formation length is too long). Since we know \(\hat{c}_{\text{opt}}^{i_{\text{opt}}}(N, \ldots, \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N - 2) - a \), this cost-to-target must be maintained at \(\hat{C}(N) \), both \(\hat{e}_{N-3}^{N-3} \) and \(\hat{e}_{N-3}^{N-3} - a \) must decrease (i.e., \(\hat{e}_{N-3}^{N-3} \leq \hat{e}_{N-3}^{N-3} \)). But since (8g) is violated for \(\hat{e}_{N-3}^{N-3} \), it must be that \(\hat{e}_{N-3}^{N-3} > \hat{e}_{N-3}^{N-3} \), which is a contradiction. Thus, it must be that \(\hat{c} < \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N, \ldots, \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N - 2) - a) \). Under the assumption of (12), a similar argument can be made to show that \(\hat{e} \leq \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N, \ldots, \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N - 2) - b) \). Let us now reverse the change of \(a \) (resp. \(b \)) in \(\hat{e}_{N-2} \) (resp. \(\hat{e}_{N-4} \)). Then we see that \(\hat{c}_{\text{opt}}^{i_{\text{opt}}}(N, \ldots, \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N - 4) < \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N, \ldots, \hat{c}_{\text{opt}}^{i_{\text{opt}}}(N - 2) \). But, by Corollary A.2, this would mean that \(\hat{C}(N - 2) < \hat{C}(N) \), contradicting (12). The claim can be extended analogously for cases where more switches are removed. Thus, \(\hat{C}(N) < \hat{C}(N - 4) \). So long as (8b)–(8f) are satisfied for \(\hat{C}(N) \) and \(N - 2k \), the above construction is valid. Thus, \(\hat{C}(N - 2) = \infty \Rightarrow \hat{C}(N - 4) = \infty \), and so on. This proves (S2).

Next, we design a method to find the optimal \(N \). Define
\[
\Delta_N^i := \hat{C}(N) - \hat{C}(N + 2).
\]
If \(N^* \in \mathbb{E} \) is optimal, then Theorem 5.4 implies \(\Delta_N^i > 0 \) for all \(N \in \mathbb{N} \) (resp. \(\Delta_N^i < 0 \) for all \(N \in \mathbb{N} \). This means \(\Delta_N^i \) is finite. Also, \(0 \in [\Delta_N^i, \Delta_N^i - 2] \). Thus, the problem of finding an optimal \(N \) is well-suited for a binary search (see Cormen, Leiserson, Rivest, and Stein (2009)), which is presented in Algorithm 1 adapted to our problem.

Algorithm 1

The binary search algorithm

Input: \(N \) with \(\Delta_N^i \) or \(\Delta_N^i + 2 \) finite

1: if \(\Delta_N^i \geq 0 \) then
2: \(N := N + 2 \)
3: while \(\Delta_N^i \geq 0 \) do
4: \(N := N + 2 \)
5: \(N := N + 2 \)
6: end while
7: else \(N := 2 + (N \mod 2) \) and \(N := N - 2 \)
8: end if
9: while \(\Delta_N^i - 4 \geq 0 \) and \(\Delta_N^i \neq 0 \) do
10: \(N := (N^* - N) \)
11: if \(\Delta_N^i \geq 0 \) then
12: \(N := N \)
13: else \(N := N \)
14: end while
15: return \(N \) if \(\Delta_N^i \leq 0 \), \(N + 1 \) otherwise

The method is implemented for odd and even inputs, the optimal \(N \) being the lesser of the two outputs. The computational intensity of the binary search algorithm stems from the evaluation of \(\Delta_N^i \), which solves (8).
Corollary 5.5 (Correctness and Complexity). Suppose (2) is feasible and \(N^*\) is its minimizer. Let \(N^*_0 \in \mathbb{O}\) (resp. \(N^*_0 \in \mathbb{E}\)) be a valid input to the binary search algorithm with output \(N^*\) (resp. \(N^*_0\)). Then \(N^* \in \{N^*_0, N^*\}\). Moreover, to determine \(N^*\) the problem (8) is solved at most \(4\log_2 N^*\) times.

The correctness result in Corollary 5.5 follows from Theorem 5.4 and the complexity result is inherited from binary search algorithms (Cormen et al., 2009). Fig. 6 presents simulation results verifying the correctness of the binary search algorithm. The main differences when compared to the simulations presented in Fig. 4 pertain to the cost of switching (\(f^*\)) being positive and the degree of cooperation between agents (\(e^i, e^j\)). The agents in Fig. 4 are able to induce cooperation even when \(e^i, e^j\) are small because adding a switch does not increase their final cost-to-target. On the other hand, when there is a cost associated with switching, the agents are not able to switch arbitrarily fast without increasing their final cost-to-target. In fact, the problem (6) is infeasible for small \(e^i, e^j\) under costly switching. In terms of real-world implementation, the binary search algorithm is run prior to agents beginning their formation. For this reason, the implementation time of the binary search algorithm is not reflected in the simulation of Fig. 6. However, on-board processors must be able to run the binary search algorithm within the time required for UAVs to fly from their current location to the formation rendezvous location.

6. Conclusions

We have considered the problem of optimally allocating the leader task between pairs of selfish UAVs flying in formation. Formulated as a nonlinear program, our problem poses two distinct challenges: given a fixed number of leader switches, determining the optimal leader allocation and finding the optimal number of leader switches. We showed that, when switching the lead has no cost, the optimal value can be obtained via a convex program and designed the cost realization algorithm to determine an optimal cooperation-inducing leader allocation. In the costly switching case, we restricted the feasible set of allocations to mimic the structure of the solutions provided by this policy. The resulting restriction has the same optimal value and, for a fixed number of leader switches, is convex. We also unveiled a quasiconvexity-like property of the optimal value as a function of the number of switches and designed the binary search algorithm to find the optimal number in logarithmic time. Future work will include extensions to formations of more than two UAVs, scenarios with obstacle avoidance/no-fly zones, and problems where UAVs bargain over the possibility of joining in formation.

Appendix

Here, we state two results used to prove Theorem 5.4.

Lemma A.1 (Property of the Last Two Lead/Follow Distances). For \(k \in \mathbb{N}\), let \(\epsilon^N \in \mathbb{L}_N\) and \(\epsilon^{N+2k} \in \mathbb{L}_N\) such that

\[
\begin{align*}
(i) & \quad \sum_{k=1}^{N-2} \epsilon^N_k \leq \sum_{k=1}^{N-2} \epsilon^{N+2k}_k, \\
(ii) & \quad c^{\epsilon^N}_{N-2}(\epsilon^N_1, \ldots, \epsilon^N_{N-2}) \leq c^{\epsilon^{N+2k}}_{N-2}(\epsilon^{N+2k}_1, \ldots, \epsilon^{N+2k}_{N-2}), \\
(iii) & \quad c^{\epsilon^N}_{N-2}(\epsilon^N_1, \ldots, \epsilon^N_{N-2}, \epsilon^{N+2k}_{N-1}) = c^{\epsilon^N}_{N-2}(\epsilon^N_1, \ldots, \epsilon^N_{N-2}, \epsilon^{N+2k}_{N-1}), \\
(iv) & \quad c^{\epsilon^N}_{N-2}(\epsilon^N) = c^{\epsilon^{N+2k}}_{N-2}(\epsilon^{N+2k}), \quad c^N(\epsilon^N) = c^N(\epsilon^{N+2k}).
\end{align*}
\]

Then, \(\rho^N < \rho_{N+2k}^{N+2k}\) and \(\rho^N < \rho_{N+2k}^{N+2k}\).

Proof. Suppose that \(k = 1\) and \(N\) is even. Recall (cf. Section 3.2) that \(c^{\epsilon^N}_{N-2}\) is strictly decreasing and convex on \(\mathbb{L}_N\). Also, \(c^{\epsilon^N}_{N-2}\) has the convexity-like property

\[
0 < c^{\epsilon^N}_{N-2}(L) - c^{\epsilon^N}_{N-2}(L) < c^{\epsilon^N}_{N-2}(L) - c^{\epsilon^N}_{N-2}(L).
\]

Therefore, if for some \(L_1 \leq L_2\) and \(a > b > 0\),

\[
0 > c^{\epsilon^N}_{N+2k}(L_1 + a) - c^{\epsilon^N}_{N+2k}(L_1) > c^{\epsilon^N}_{N+2k}(L_2 + a) - c^{\epsilon^N}_{N+2k}(L_2),
\]

(1.1)

then \(a < b\). Take \(L_1 = \sum_{k=1}^{N-2} \epsilon^N_k, L_2 = \sum_{k=1}^{N-2} \epsilon^{N+2k}_k, a = \epsilon^N_{N-1} + \epsilon^{N+2k}_{N-1} + \epsilon^N_{N+2k}, b = \epsilon^N_{N+1} + \epsilon^{N+2k}_{N+1} + \epsilon^{N+2k}_{N+1}\). Now note that, expressing (ii)–(iv) in terms of the combined fuel functions, shows that the condition (A.1) is satisfied for this choice of values. Thus \(a = \epsilon^N_{N-1} + \epsilon^{N+2k}_{N-1} + \epsilon^N_{N+2k} < b = \epsilon^N_{N+1} + \epsilon^{N+2k}_{N+1} + \epsilon^{N+2k}_{N+1}\). Next, we show by contradiction that \(\epsilon^N_{N-1} = \epsilon^{N+2k}_{N+1} + \epsilon^{N+2k}_{N+1}\). Suppose \(\epsilon^N_{N-1} \geq \epsilon^{N+2k}_{N+1} + \epsilon^{N+2k}_{N+1}\). Thus

\[
\begin{align*}
c^{\epsilon^N}_{N-2}(\epsilon^N_1, \ldots, \epsilon^N_{N-2}) - c^{\epsilon^N}_{N-2}(\epsilon^N_1, \ldots, \epsilon^N_{N-2}) > c^{\epsilon^N}_{N+2k}(\epsilon^N_1, \ldots, \epsilon^N_{N+2k}) - c^{\epsilon^N}_{N+2k}(\epsilon^N_1, \ldots, \epsilon^N_{N+2k}).
\end{align*}
\]
Since (ii) is true and following is more beneficial to j earlier in the formation, the above implies that $c_{t,N-1}^j(\ell_{N-1}^N, \ldots, \ell_{k}^N) < c_{t,N-1}^j(\ell_{N-1}^{N+1}, \ldots, \ell_{k}^{N+1})$. To satisfy (iv), this would mean $c_{t,N}^j(\ell_{N}^N) - c_{t,N-1}^j(\ell_{N-1}^{N}, \ldots, \ell_{k}^{N-1}) > c_{t,N+1}^j(\ell_{N+1}^{N+1}, \ldots, \ell_{k}^{N+1}) - c_{t,N-1}^j(\ell_{N-1}^{N}, \ldots, \ell_{k}^{N-1})$.

Since leading is more costly further in the formation, the above can only be satisfied if $\ell_{N}^N > \ell_{N+1}^{N+1}$. However, this would contradict $\ell_{N}^N + \ell_{N}^{N+1} < \ell_{N+1}^{N+1} + \ell_{N+1}^{N+2}$. Reasoning instead with i’s cost-to-target and starting with $\ell_{N}^N > \ell_{N+1}^{N+2}$, a similar contradiction can be reached. N odd and k ≥ 2 can be handled similarly.

Corollary A.2 *(Sufficient Condition to Benefit from Switch Removal)*. Let $\ell \in \mathbb{N}$. If

$$c_{t,N-2(k+1)}(\ell_1^N, \ldots, \ell_{N-2(k+1)}) \leq c_{t,N-2}(\ell_1^N, \ldots, \ell_{N-2}),$$

for some $k \leq \frac{N}{2} - 2$ then $C_1(N - 2k) < C_1(N)$.

Proof. Suppose that N is even and let $\ell^N - 2k$ satisfy (8b)-(8f) for $N \geq 2$ and $C_1(N)$. Since the assumptions of Lemma A.1 are satisfied, $\ell^N - 2k < \ell^N$. Thus

$$c_{t,N-2k}(\ell_1^{N-2k}, \ldots, \ell_{N-2k}^{N-2k}) - c_{t,N-2k}(\ell_1^{N}, \ldots, \ell_{N-2k}^{N-1}) < c_{t,N}(\ell_1^{N}) - c_{t,N-1}(\ell_1^{N}, \ldots, \ell_{N-1}^{N}),$$

$$c_{t,N-2k-1}(\ell_1^{N-2k}, \ldots, \ell_{N-2k}^{N-2k}) - c_{t,N-1}(\ell_1^{N}, \ldots, \ell_{N-2k-1}^{N}) \geq C_1(N) - c_1,$$

In other words, (8g) is satisfied for $\ell^N - 2k$, and thus $C_1(N - 2k) < C_1(N)$ (this relation is strict because (8g) is not active and thus there exists a feasible $c_1 < C_1(N)$). N odd can be dealt with analogously.

References

Dean Richert received his B.Sc. and M.Sc. degrees in electrical and computer engineering from the University of Calgary, Canada, in 2008 and 2010 respectively. He is currently pursuing a Ph.D. in mechanical and aerospace engineering at the University of California, San Diego (UCSD), and expects to graduate in the spring of 2014. He is the recipient of a Jacob’s Fellowship from UCSD as well as a Postgraduate Scholarship from the Natural Sciences and Engineering Research Council of Canada. His research interests include cooperative control, distributed optimization, game theory, nonsmooth analysis, and set-valued dynamical systems.

Jorge Cortés received his Licenciatura degree in mathematics from the Universidad de Zaragoza, Spain, in 1997, and his Ph.D. in engineering mathematics from the Universidad Carlos III de Madrid, Spain, in 2001. He held postdoctoral positions at the University of Twente, The Netherlands, and the University of Illinois at Urbana-Champaign, USA. He was an Assistant Professor with the Department of Applied Mathematics and Statistics at the University of California, Santa Cruz from 2004 to 2007. He is currently an Associate Professor in the Department of Mechanical and Aerospace Engineering, University of California, San Diego. His research interests include cooperative control, game theory, spatial estimation, distributed optimization, and geometric mechanics. He is the author of Geometric, Control and Numerical Aspects of Nonholonomic Systems (Springer-Verlag, 2002) and co-author (together with F. Bullo and S. Martínez) of Distributed Control of Robotic Networks (Princeton University Press, 2009). He received the NSF CAREER award in 2006 and was the recipient of the 2006 Spanish Society of Applied Mathematics Young Researcher Prize. He has co-authored papers that won the 2008 IEEE Control Systems Outstanding Paper Award, the 2009 SIAM Review SIGEST section from the SIAM Journal on Control and Optimization, and the 2012 O. Hugo Schuck Best Paper Award in the Theory category. He is an IEEE Control Systems Society Distinguished Lecturer (2010–2012).