Event-triggered stabilization of linear systems under channel blackouts

Pavankumar Tallapragada, Massimo Franceschetti & Jorge Cortés

UC San Diego
Jacobs School of Engineering

Allerton Conference, 30 Sept. 2015

Acknowledgements: National Science Foundation (Grants CNS-1329619, CNS-1446891)
Networked control systems

- Time-varying communication rates
- Channel may not be available during some intervals (blackouts)
- Time-triggered strategies would be very conservative
- Event-triggered controllers typically assume on-demand availability of channel\(^1\)

\(^1\) An important exception: Anta, Tabuada (2009)
Networked control systems

- Time-varying communication rates
- Channel may not be available during some intervals (blackouts)
- Time-triggered strategies would be very conservative
- Event-triggered controllers typically assume on-demand availability of channel\(^1\)
- Quantization

\(^1\) An important exception: Anta, Tabuada (2009)
Networked control systems

Shared communication resource

- Time-varying communication rates
- Channel may not be available during some intervals (blackouts)
- Time-triggered strategies would be very conservative
- Event-triggered controllers typically assume *on-demand* availability of channel

- Quantization

 Key to online state based transmission policy: data capacity

 \(^1\) An important exception: Anta, Tabuada (2009)
System description

Plant dynamics:
\[\dot{x}(t) = A x(t) + B u(t), \quad u(t) = K \hat{x}(t), \quad x(t) \in \mathbb{R}^n \]
System description

Plant dynamics:
\[\dot{x}(t) = Ax(t) + Bu(t), \quad u(t) = K\hat{x}(t), \quad x(t) \in \mathbb{R}^n \]

Communication model:
\[\Delta_k \leq \Delta(t_k, p_k) \triangleq \frac{b_k}{R_a(t_k)} = \frac{p_k}{R(t_k)} \]

of bits transmitted at \(t_k \) is \(b_k = np_k \)

Can choose \(\{t_k\}, \{p_k\}, \{\tilde{r}_k\} \)
System description

Plant dynamics:
\[
\dot{x}(t) = Ax(t) + Bu(t), \quad u(t) = K\dot{x}(t), \quad x(t) \in \mathbb{R}^n
\]

Communication model:

\[
\Delta_k \leq \Delta(t_k, p_k) \triangleq \frac{b_k}{R_a(t_k)} = \frac{p_k}{R(t_k)}
\]

of bits transmitted at \(t_k \) is \(b_k = np_k \)

Can choose \(\{t_k\}, \{p_k\}, \{\tilde{r}_k\} \)

Dynamic controller flow:
\[
\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) = \bar{A}\hat{x}(t), \quad t \in [\tilde{r}_k, \tilde{r}_{k+1})
\]
System description

Plant dynamics:
\[
\dot{x}(t) = Ax(t) + Bu(t), \quad u(t) = K\hat{x}(t), \quad x(t) \in \mathbb{R}^n
\]

Communication model:
\[
\Delta_k \leq \Delta(t_k, p_k) \triangleq \frac{b_k}{R_a(t_k)} = \frac{p_k}{R(t_k)}
\]

of bits transmitted at \(t_k \) is \(b_k = np_k \)

Can choose \(\{t_k\}, \{p_k\}, \{\tilde{r}_k\} \)

Dynamic controller flow:
\[
\dot{x}(t) = A\hat{x}(t) + Bu(t) = \bar{A}\hat{x}(t), \quad t \in [\tilde{r}_k, \tilde{r}_{k+1})
\]

Dynamic controller jump:
\[
\hat{x}(\tilde{r}_k) \triangleq q_k(x(t_k), \hat{x}(t_k^-))
\]

Encoding error: \(x_e \triangleq x - \hat{x} \)
Can design2 consistent algorithms for the encoder and decoder to implement quantizer \(q_k \) so that:

\begin{itemize}
 \item If the decoder knows \(d_e(t_0) \) s.t. \(\|x_e(t_0)\|_\infty \leq d_e(t_0) \)
 \item Both encoder and decoder compute recursively:
 \[d_e(t) \triangleq \|e_{A}(t-t_k)\|_\infty \delta_k, \quad t \in [\tilde{r}_k, \tilde{r}_k+1) \]
 \[\delta_{k+1} = \frac{1}{2} p_{k+1} \]
 \[\text{then, } \|x_e(t)\|_\infty \leq d_e(t), \text{ for all } t \geq t_0 \]
\end{itemize}

2Tallapragada, Cortés (2016)
Can design\(^2\) consistent algorithms for the encoder and decoder to implement quantizer \(q_k\) so that:

- If the decoder knows \(d_e(t_0)\) s.t. \(\|x_e(t_0)\|_\infty \leq d_e(t_0)\)

\(^2\)Tallapragada, Cortés (2016)
Can design\(^2\) consistent algorithms for the encoder and decoder to implement quantizer \(q_k\) so that:

- If the decoder knows \(d_e(t_0)\) s.t. \(\|x_e(t_0)\|_{\infty} \leq d_e(t_0)\)
- Both encoder and decoder compute recursively:

\[
d_e(t) \triangleq \|e^{A(t-t_k)}\|_{\infty}\delta_k, \quad t \in [\tilde{r}_k, \tilde{r}_{k+1}), \quad k \in \mathbb{Z}_{\geq 0}
\]

\[
\delta_{k+1} = \frac{1}{2p_{k+1}} d_e(t_{k+1}).
\]

\(^2\)Tallapragada, Cortés (2016)
Can design^2 consistent algorithms for the encoder and decoder to implement quantizer q_k so that:

- If the decoder knows $d_e(t_0)$ s.t. $\|x_e(t_0)\|_{\infty} \leq d_e(t_0)$
- Both encoder and decoder compute recursively:

$$d_e(t) \triangleq \|e^{A(t-t_k)}\|_{\infty}\delta_k, \ t \in [\tilde{r}_k, \tilde{r}_{k+1}), \ k \in \mathbb{Z}_{\geq 0}$$

$$\delta_{k+1} = \frac{1}{2p_{k+1}}d_e(t_{k+1}).$$

- Then, $\|x_e(t)\|_{\infty} \leq d_e(t)$, for all $t \geq t_0$

^2Tallapragada, Cortés (2016)
Suppose $\bar{A} = A + BK$ is Hurwitz $\iff P\bar{A} + \bar{A}^T P = -Q$

Lyapunov function: $x \mapsto V(x) = x^T P x$

Objective
Suppose $\bar{A} = A + BK$ is Hurwitz $\iff P\bar{A} + \bar{A}^TP = -Q$

Lyapunov function: $x \mapsto V(x) = x^TPx$

Desired performance function: $V_d(t) = V_d(t_0)e^{-\beta(t-t_0)}$

Performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$
Suppose $\bar{A} = A + BK$ is Hurwitz $\iff P\bar{A} + \bar{A}^TP = -Q$

Lyapunov function: $x \mapsto V(x) = x^TPx$

Desired performance function: $V_d(t) = V_d(t_0)e^{-\beta(t-t_0)}$

Performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Design objective:

- Design event-triggered communication policy that is applicable to channels with time-varying rates and blackouts
- Recursively determine $\{t_k\}$, $\{p_k\}$ and $\{\tilde{r}_k\}$
- Ensure a uniform positive lower bound for $\{t_k - t_{k-1}\}_{k \in \mathbb{Z}_{>0}}$
Time-slotted channel model

\[R(t) = R_j, \quad \forall t \in (\theta_j, \theta_{j+1}], \quad \text{min comm. rate: } \frac{p_k}{\Delta(t_k, p_k)} \geq R(t_k) \]

\[\bar{p}(t) = \bar{\pi}_j, \quad \forall t \in (\theta_j, \theta_{j+1}], \quad \text{max packet size: } p_k \leq \bar{p}(t_k) \]

- \(j^{th} \) time-slot is of length \(T_j = \theta_{j+1} - \theta_j \)
- Channel is not available when \(\bar{p} = 0 \) (channel blackout)
- Channel evolution is known a priori
Time-slotted channel model

\[R(t) = R_j, \quad \forall t \in (\theta_j, \theta_{j+1}], \quad \text{min comm. rate:} \quad \frac{p_k}{\Delta(t_k, p_k)} \geq R(t_k) \]

\[\bar{p}(t) = \bar{\pi}_j, \quad \forall t \in (\theta_j, \theta_{j+1}], \quad \text{max packet size:} \quad p_k \leq \bar{p}(t_k) \]

- \(j \)th time-slot is of length \(T_j = \theta_{j+1} - \theta_j \)
- Channel is not available when \(\bar{p} = 0 \) (channel blackout)
- Channel evolution is known a priori

Main idea of solution: make sure the encoding error is sufficiently small at the beginning of a channel blackout
Time-slotted channel model

\[R(t) = R_j, \quad \forall t \in (\theta_j, \theta_{j+1}], \quad \text{min comm. rate:} \quad \frac{p_k}{\Delta(t_k, p_k)} \geq R(t_k) \]

\[\bar{p}(t) = \bar{\pi}_j, \quad \forall t \in (\theta_j, \theta_{j+1}], \quad \text{max packet size:} \quad p_k \leq \bar{p}(t_k) \]

- \(j^{th} \) time-slot is of length \(T_j = \theta_{j+1} - \theta_j \)
- Channel is not available when \(\bar{p} = 0 \) (*channel blackout*)
- Channel evolution is known a priori

Main idea of solution: make sure the encoding error is sufficiently small at the beginning of a channel blackout

Need to quantify *data capacity*
max # of bits that can be *communicated* during the time interval \([\tau_1, \tau_2]\), overall all possible \(\{t_k\}\) and \(\{p_k\}\)

\[
D(\tau_1, \tau_2) \triangleq \max_{\{t_k\}, \{p_k\}} \ n \sum_{k=k_{\tau_1}}^{k_{\tau_2}} p_k
\]

Equivalent to optimal allocation of discrete # bits to be transmitted in each time slot.
Data capacity

\[
\text{max \# of bits that can be } \text{communicated} \text{ during the time interval } [\tau_1, \tau_2], \text{ overall all possible } \{t_k\} \text{ and } \{p_k\}
\]

\[
D(\tau_1, \tau_2) \triangleq \max \left\{ t_k \right\} \left\{ p_k \right\} \quad \text{s.t. } \ldots
\]

\[
\sum_{k=\tau_1}^{k=\tau_2} p_k = 3, \quad k_{\tau_1} = 3, \quad k_{\tau_2} = 7
\]

Equivalent to optimal allocation of \textit{discrete} \# bits to be transmitted in each time slot
Data capacity as allocation problem

Max # bits that may be transmitted in slot j

$$n_{\phi_j} \leq \begin{cases}
 nR_j T_j + n\bar{\pi}_j, & \text{if } \bar{\pi}_j > 0 \\
 0, & \text{if } \bar{\pi}_j = 0
\end{cases}$$

Available time in slot j is affected by prior transmissions

Count only the bits also received

$$\phi_j \leq \begin{cases}
 \bar{T}_j(\phi_j f_j) + \theta_j f_j - \theta_j + 1, & \text{if } \bar{T}_j(\phi_j f_j) > 0 \\
 0, & \text{otherwise}
\end{cases}$$

$D(\theta_j f_j, \theta_j f_j) = \max_{\phi_j \in \mathbb{Z} \geq 0} \text{s.t. . . .}$
Data capacity as allocation problem

Max # bits that may be transmitted in slot j

$$n_{\phi_j} \leq \begin{cases}
 nR_jT_j + n\bar{\pi}_j, & \text{if } \bar{\pi}_j > 0 \\
 0, & \text{if } \bar{\pi}_j = 0
\end{cases}$$

Available time in slot j is affected by prior transmissions

$$n_{\phi_j} \leq \begin{cases}
 nR_j\bar{T}_j(\phi_{j0}^j) + n\bar{\pi}_j, & \text{if } \bar{T}_j(\phi_{j0}^j) > 0 \\
 0 & \text{otherwise}
\end{cases}$$
Max # bits that may be transmitted in slot j

$$n\phi_j \leq \begin{cases} nR_jT_j + n\bar{\pi}_j, & \text{if } \bar{\pi}_j > 0 \\ 0, & \text{if } \bar{\pi}_j = 0 \end{cases}$$

Available time in slot j is affected by prior transmissions

$$n\phi_j \leq \begin{cases} nR_j\bar{T}_j(\phi_{j0}^f) + n\bar{\pi}_j, & \text{if } \bar{T}_j(\phi_{j0}^f) > 0 \\ 0, & \text{otherwise} \end{cases}$$

Count only the bits also received

$$\frac{\phi_j}{R_j} \leq \begin{cases} \bar{T}_j(\phi_{j0}^f) + \theta_{j+1} - \theta_j, & \text{if } \bar{T}_j(\phi_{j0}^f) > 0 \\ 0, & \text{otherwise.} \end{cases}$$
Data capacity as allocation problem

Max # bits that may be transmitted in slot j

$$n\phi_j \leq \begin{cases} nR_j T_j + n\bar{\pi}_j, & \text{if } \bar{\pi}_j > 0 \\ 0, & \text{if } \bar{\pi}_j = 0 \end{cases}$$

Available time in slot j is affected by prior transmissions

$$n\phi_j \leq \begin{cases} nR_j \bar{T}_j(\phi_{j0}^{j_f}) + n\bar{\pi}_j, & \text{if } \bar{T}_j(\phi_{j0}^{j_f}) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Count only the bits also received

$$\frac{\phi_j}{R_j} \leq \begin{cases} \bar{T}_j(\phi_{j0}^{j_f}) + \theta_{j_f} - \theta_{j+1}, & \text{if } \bar{T}_j(\phi_{j0}^{j_f}) > 0 \\ 0, & \text{otherwise}. \end{cases}$$

$$D(\theta_{j0}, \theta_{j_f}) = \max_{\phi_j \in \mathbb{Z} \geq 0} \sum_{j=j_0}^{j_f-1} n \sum_{j=j_0}^{j_f-1} \phi_j.$$
A suboptimal solution for “slowly varying channels”

Proposition

Assume \(\frac{\bar{\pi}_j}{R_j} < T_{j+1}, \forall j \in N_{j_0}^j \) (any bits transmitted in slot \(j \) are received before the end of slot \(j + 1 \)).
A suboptimal solution for “slowly varying channels”

Proposition

Assume \(\frac{\bar{\pi}_j}{R_j} < T_{j+1}, \forall j \in \mathcal{N}_{j_0}^{j_f} \) (any bits transmitted in slot \(j \) are received before the end of slot \(j + 1 \)). Let \(\phi^r = \arg\max_{\phi_j \in \mathbb{R}_{\geq 0}} \sum_{j=j_0}^{j_f-1} \phi_j \) \((LP)\).

Let

\[\phi^N \triangleq \lfloor \phi^r \rfloor \triangleq ([\phi^r_{j_0}], \ldots, [\phi^r_{j_f-1}]), \quad D_s(\theta_{j_0}, \theta_{j_f}) \triangleq n \sum_{j=j_0}^{j_f-1} \phi^N_j. \]
A suboptimal solution for "slowly varying channels"

Proposition

Assume \(\frac{\bar{\pi}_j}{R_j} < T_{j+1}, \forall j \in \mathcal{N}^{j_f}_{j_0} \) (any bits transmitted in slot \(j \) are received before the end of slot \(j + 1 \)). Let \(\phi^r = \arg\max_{\phi_j \in \mathbb{R} \geq 0} \sum_{j=j_0}^{j_f-1} \phi_j \) (LP).

Let

\[
\phi^N \triangleq \lfloor \phi^r \rfloor \triangleq (\lfloor \phi^r_{j_0} \rfloor, \ldots, \lfloor \phi^r_{j_f-1} \rfloor), \quad D_s(\theta_{j_0}, \theta_{j_f}) \triangleq n \sum_{j=j_0}^{j_f-1} \phi^N_j .
\]

Then

- \(\phi^N \) is a sub-optimal solution
- \(D(\theta_{j_0}, \theta_{j_f}) - D_s(\theta_{j_0}, \theta_{j_f}) \leq n(j_f - 1 - j_0) \).
Proposition

Let ϕ^* (or ϕ^N) be any optimizing solution to $D(\theta_{j_0}, \theta_{j_f})$ (or $D_s(\theta_{j_0}, \theta_{j_f})$).
Proposition

Let ϕ^* (or ϕ^N) be any optimizing solution to $D(\theta_{j_0}, \theta_{j_f})$ (or $D_s(\theta_{j_0}, \theta_{j_f})$). For any $t \in [\theta_{j_0}, \theta_{j_0+1})$ (any t in j_0 slot)

$$\hat{D}(t, \theta_{j_f}) \triangleq [n \left[\phi_{j_0}^* - R_{j_0}(t - \theta_{j_0}) \right]]_+ + n \sum_{j=j_0+1}^{j_f-1} \phi_j^*$$

$$\hat{D}_s(t, \theta_{j_f}) \triangleq [n \left[\phi_{j_0}^N - R_{j_0}(t - \theta_{j_0}) \right]]_+ + n \sum_{j=j_0+1}^{j_f-1} \phi_j^N,$$
Proposition

Let ϕ^* (or ϕ^N) be any optimizing solution to $D(\theta_{j_0}, \theta_{j_f})$ (or $D_s(\theta_{j_0}, \theta_{j_f})$). For any $t \in [\theta_{j_0}, \theta_{j_0+1})$ (any t in j_0 slot)

$$\hat{D}(t, \theta_{j_f}) \triangleq \left[n \left[\phi^*_{j_0} - R_{j_0}(t - \theta_{j_0}) \right] \right]_+ + n \sum_{j=j_0+1}^{j_f-1} \phi^*_j$$

$$\hat{D}_s(t, \theta_{j_f}) \triangleq \left[n \left[\phi^N_{j_0} - R_{j_0}(t - \theta_{j_0}) \right] \right]_+ + n \sum_{j=j_0+1}^{j_f-1} \phi^N_j,$$

Then, $0 \leq D(t, \theta_{j_f}) - \hat{D}(t, \theta_{j_f}) \leq n$ and $0 \leq D_s(t, \theta_{j_f}) - \hat{D}_s(t, \theta_{j_f}) \leq n$.

Significance: Sufficient to solve the data capacity problem for intervals $[\theta_{j_0}, \theta_{j_f}]$ of interest.
Proposition

Let ϕ^* (or ϕ^N) be any optimizing solution to $D(\theta_{j_0}, \theta_{j_f})$ (or $D_s(\theta_{j_0}, \theta_{j_f})$). For any $t \in [\theta_{j_0}, \theta_{j_0+1})$ (any t in j_0 slot)

$$\hat{D}(t, \theta_{j_f}) \triangleq [n \left(\phi^*_{j_0} - R_{j_0}(t - \theta_{j_0}) \right)]_+ + n \sum_{j=j_0+1}^{j_f-1} \phi^*_j$$

$$\hat{D}_s(t, \theta_{j_f}) \triangleq [n \left(\phi^N_{j_0} - R_{j_0}(t - \theta_{j_0}) \right)]_+ + n \sum_{j=j_0+1}^{j_f-1} \phi^N_j,$$

Then, $0 \leq D(t, \theta_{j_f}) - \hat{D}(t, \theta_{j_f}) \leq n$ and $0 \leq D_s(t, \theta_{j_f}) - \hat{D}_s(t, \theta_{j_f}) \leq n$.

Significance: Sufficient to solve the data capacity problem for intervals $[\theta_{j_0}, \theta_{j_f}]$ of interest.
Elements of the event-trigger

Recall performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$
Elements of the event-trigger

Recall performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function: $h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{pf}(t))}$, $\epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$
Elements of the event-trigger

Recall performance objective: ensure \(h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1 \), for all \(t \geq t_0 \)

Channel trigger function: \(h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_{T}(h_{pf}(t))} \), \(\epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}} \)

Lemma

If \(h_{pf}(t) \leq 1 \) and \(h_{ch}(t) \leq 1 \)
Elements of the event-trigger

Recall performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function: $h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{pf}(t))}$, $\epsilon(t) \triangleq \frac{d_e(t)}{c \sqrt{V_d(t)}}$

Lemma

If $h_{pf}(t) \leq 1$ and $h_{ch}(t) \leq 1$ then $h_{pf}(s) \leq 1$, $\forall s \in [t, t + T']$.
Elements of the event-trigger

Recall performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function: $h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{pf}(t))}$, $\epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$

Lemma

If $h_{pf}(t) \leq 1$ and $h_{ch}(t) \leq 1$ then $h_{pf}(s) \leq 1$, $\forall s \in [t, t + T']$.

Idea for triggering:

- Make sure $h_{pf}(t) \leq 1$, $\forall t \in [t_k, \tilde{r}_k]$
Elements of the event-trigger

Recall performance objective: ensure \(h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1 \), for all \(t \geq t_0 \)

Channel trigger function: \(h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{pf}(t))} \), \(\epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}} \)

Lemma

If \(h_{pf}(t) \leq 1 \) and \(h_{ch}(t) \leq 1 \) then \(h_{pf}(s) \leq 1 \), \(\forall s \in [t, t + T'] \).

Idea for triggering:

- Make sure \(h_{pf}(t) \leq 1 \), \(\forall t \in [t_k, \tilde{r}_k] \)
- Make sure \(h_{ch}(\tilde{r}_k) \leq 1 \) so that future ability to control is not lost
Elements of the event-trigger

Recall performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function: $h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{pf}(t))}$, $\epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$

Lemma

If $h_{pf}(t) \leq 1$ and $h_{ch}(t) \leq 1$ then $h_{pf}(s) \leq 1$, $\forall s \in [t, t + T']$.

Idea for triggering:

- Make sure $h_{pf}(t) \leq 1$, $\forall t \in [t_k, \tilde{r}_k]$
- Make sure $h_{ch}(\tilde{r}_k) \leq 1$ so that future ability to control is not lost

$\tilde{L}_1(t) \triangleq \bar{h}_{pf}(\mathcal{T}(t), h_{pf}(t), \epsilon(t))$

$\tilde{L}_2(t) \triangleq \bar{h}_{ch}(\mathcal{T}(t), h_{pf}(t), \epsilon(t), \psi^{\tau_l}(t))$

$\mathcal{T}(t) \triangleq \begin{cases} T_M(\psi^{\tau_l}(t)), & \text{if } \psi^{\tau_l}(t) \geq 1 \\ \frac{2}{R(t)}, & \text{if } \psi^{\tau_l}(t) = 0. \end{cases}$
Role data capacity in control

\[\tilde{L}_3(t) \equiv n \log_2 \left(e \bar{\mu} (\tau_l(t) - t) \epsilon(t) \epsilon_r(t) \right) - \sigma_1 \hat{D}_s(t, \tau_l(t)) \]

Transmission policy should be in tune with the optimal allocation

\[\Phi_{\tau_l}(t) \equiv \left\lfloor P_j - R_j(t - \theta_j) \right\rfloor + , t \in (\theta_j, \theta_j + 1) \]

Artificial bound on packet size:

\[\psi_{\tau_l}(t) \equiv \min\{ \bar{p}(t), \Phi_{\tau_l}(t) \} \]

If \(\tilde{L}_3(t_k) \leq 0 \) and \(p_k \leq \psi_{\tau_l}(t_k) \) then \(\tilde{L}_3(r_k) \leq 0 \)

If data capacity was "sufficient" at \(t_k \) and \(p_k \) respects artificial bound then data capacity is "sufficient" at \(r_k \)

But \(\psi_{\tau_l}(t) \) can be 0 when \(\bar{p}(t_k) > 0 \) (artificial blackouts)
Role data capacity in control

\[\tilde{L}_3(t) \triangleq n \log_2 \left(\frac{\bar{\mu}(\tau_l(t) - t) \epsilon(t)}{\epsilon_r(t)} \right) - \sigma_1 \hat{D}_s(t, \tau_l(t)) \]
Role data capacity in control

\[\tilde{L}_3(t) \triangleq n \log_2 \left(\frac{e^{\overline{\mu}(\tau_l(t)-t)} \epsilon(t)}{\epsilon_r(t)} \right) - \sigma_1 \hat{D}_s(t, \tau_l(t)) \]

Transmission policy should be in tune with the optimal allocation
Role data capacity in control

\[\hat{L}_3(t) \triangleq n \log_2 \left(\frac{e^{\bar{\mu}(\tau_l(t)-t)} \epsilon(t)}{\epsilon_r(t)} \right) - \sigma_1 \hat{D}_s(t, \tau_l(t)) \]

Transmission policy should be in tune with the optimal allocation

\[\Phi^{\tau_l}(t) \triangleq [[\mathcal{P}_j - R_j(t - \theta_j)]]_+, \ t \in (\theta_j, \theta_{j+1}] \] (optim. alloc. in \((t, \theta_{j+1}]\))
Role data capacity in control

Transmission policy should be in tune with the optimal allocation

\[\Phi_{\tau_l}(t) \triangleq \left[[P_j - R_j(t - \theta_j)] \right]_+, \quad t \in (\theta_j, \theta_j+1) \] (optim. alloc. in \((t, \theta_j+1]\))

Artificial bound on packet size: \[\psi_{\tau_l}(t) \triangleq \min\{\bar{p}(t), \Phi_{\tau_l}(t)\} \]
Role data capacity in control

\[\tilde{L}_3(t) \triangleq n \log_2 \left(\frac{e^{\bar{\mu}(\tau_l(t)-t)\epsilon(t)}}{\epsilon_r(t)} \right) - \sigma_1 \hat{D}_s(t, \tau_l(t)) \]

Transmission policy should be in tune with the optimal allocation

\[\Phi^{\tau_l}(t) \triangleq \lfloor P_j - R_j(t - \theta_j) \rfloor_+ , \ t \in (\theta_j, \theta_{j+1}] \ (\text{optim. alloc. in } (t, \theta_{j+1}]) \]

Artificial bound on packet size: \[\psi^{\tau_l}(t) \triangleq \min\{\bar{p}(t), \Phi^{\tau_l}(t)\} \]

If \[\tilde{L}_3(t_k) \leq 0 \] and \[p_k \leq \psi^{\tau_l}(t_k) \]
If data capacity was “sufficient” at \[t_k \] and \[p_k \] respects artificial bound
Role data capacity in control

\[\widetilde{L}_3(t) \triangleq n \log_2 \left(\frac{e^{\bar{\mu}(\tau_l(t) - t)} \epsilon(t)}{\epsilon_r(t)} \right) - \sigma_1 \hat{D}_s(t, \tau_l(t)) \]

Transmission policy should be in tune with the optimal allocation

\[\Phi^{\tau_l}(t) \triangleq \lceil P_j - R_j(t - \theta_j) \rceil_+, \ t \in (\theta_j, \theta_{j+1}] \quad \text{(optim. alloc. in } (t, \theta_{j+1}] \text{)} \]

Artificial bound on packet size: \[\psi^{\tau_l}(t) \triangleq \min\{\bar{p}(t), \Phi^{\tau_l}(t)\} \]

If \[\widetilde{L}_3(t_k) \leq 0 \] and \[p_k \leq \psi^{\tau_l}(t_k) \] then \[\widetilde{L}_3(r_k) \leq 0 \]

If data capacity was “sufficient” at \(t_k \) and \(p_k \) respects artificial bound then data capacity is “sufficient” at \(r_k \)
Role data capacity in control

\[\tilde{L}_3(t) \triangleq n \log_2 \left(\frac{e^{\bar{\mu}(\tau_l(t)-t)}\epsilon(t)}{\epsilon_r(t)} \right) - \sigma_1 \hat{D}_s(t, \tau_l(t)) \]

Transmission policy should be in tune with the optimal allocation

\[\Phi^{\tau_l}(t) \triangleq \left[\lfloor \mathcal{P}_j - R_j(t - \theta_j) \rfloor \right]_+, \quad t \in (\theta_j, \theta_j+1] \quad \text{(optim. alloc. in } (t, \theta_j+1]) \]

Artificial bound on packet size:

\[\psi^{\tau_l}(t) \triangleq \min\{\bar{p}(t), \Phi^{\tau_l}(t)\} \]

If \(\tilde{L}_3(t_k) \leq 0 \) and \(p_k \leq \psi^{\tau_l}(t_k) \) then \(\tilde{L}_3(r_k) \leq 0 \)

If data capacity was “sufficient” at \(t_k \) and \(p_k \) respects artificial bound then data capacity is “sufficient” at \(r_k \)

But \(\psi^{\tau_l}(t) \) can be 0 when \(\bar{p}(t) > 0 \) (artificial blackouts)
Control policy in the presence of blackouts

\[t_{k+1} = \min \left\{ t \geq \tilde{r}_k : \psi^{\tau_i}(t) \geq 1 \land \left(\max\{\tilde{L}_1(t), \tilde{L}_1(t^+), \tilde{L}_2(t), \tilde{L}_2(t^+)\} \geq 1 \right) \lor \max\{\tilde{L}_3(t), \tilde{L}_3(t^+)\} \geq 0 \right\}, \]
Control policy in the presence of blackouts

\[t_{k+1} = \min \left\{ t \geq \tilde{r}_k : \psi^{\tau_l}(t) \geq 1 \land \left(\max\{\tilde{\mathcal{L}}_1(t), \tilde{\mathcal{L}}_1(t^+), \tilde{\mathcal{L}}_2(t), \tilde{\mathcal{L}}_2(t^+)\} \geq 1 \lor \max\{\tilde{\mathcal{L}}_3(t), \tilde{\mathcal{L}}_3(t^+)\} \geq 0 \right) \right\}, \]

\[p_k \in \mathbb{Z}_{>0} \cap [\underline{p}_k, \psi^{\tau_l}(t_k)] \]

\[\underline{p}_k \triangleq \min\{p \in \mathbb{Z}_{>0} : \overline{h}_{ch}(T_M(p), h_{pf}(t_k), \epsilon(t_k), p) \leq 1\}. \]
Control policy in the presence of blackouts

\[t_{k+1} = \min \left\{ t \geq \tilde{r}_k : \psi^{\tau_l}(t) \geq 1 \land \right. \]
\[\left. \left(\max\{ \tilde{\mathcal{L}}_1(t), \tilde{\mathcal{L}}_1(t^+), \tilde{\mathcal{L}}_2(t), \tilde{\mathcal{L}}_2(t^+) \} \geq 1 \right. \right. \]
\[\left. \lor \max\{ \tilde{\mathcal{L}}_3(t), \tilde{\mathcal{L}}_3(t^+) \} \geq 0 \right\}, \]

\[p_k \in \mathbb{Z}_{>0} \cap [p_k, \psi^{\tau_l}(t_k)] \]
\[p_k \triangleq \min\{ p \in \mathbb{Z}_{>0} : \bar{h}_{ch}(T_M(p), h_{pf}(t_k), \epsilon(t_k), p) \leq 1 \}. \]

\[\tilde{r}_k = \min\{ t \geq r_k : \psi^{\tau_l}(t) \geq 1 \lor p(t) = 0 \}. \]
Control policy in the presence of blackouts

Theorem

If

- $R(t) \geq \frac{(p+2)}{T_M(p)}$, $\forall p \in \{1, \ldots, p^{Max}\}$, $\forall t$
- $\tilde{L}_1(t_0) \leq 1$, $\tilde{L}_2(t_0) \leq 1$ and $\tilde{L}_3(t_0) \leq 0$ (initial feasibility)
- Conditions on blackout lengths

Then

- $\{t_k\}, \{p_k\}, \{\tilde{r}_k\}$ well defined
- Inter-transmission times have uniform positive lower bound
- $V(x(t)) \leq V_d(t_0) e^{-\beta(t-t_0)}$ for $t \geq t_0$ (origin is exponentially stable)
Control policy in the presence of blackouts

Theorem

If

1. \(R(t) \geq \frac{(p+2)}{T_M(p)}, \ \forall p \in \{1, \ldots, p^{Max}\}, \ \forall t \)
2. \(\tilde{L}_1(t_0) \leq 1, \tilde{L}_2(t_0) \leq 1 \) and \(\tilde{L}_3(t_0) \leq 0 \) (initial feasibility)
3. Conditions on blackout lengths

Then

1. \(\{t_k\}, \ \{p_k\}, \ \{\tilde{r}_k\} \) well defined
2. Inter-transmission times have uniform positive lower bound
3. \(V(x(t)) \leq V_d(t_0)e^{-\beta(t-t_0)} \) for \(t \geq t_0 \) (origin is exponentially stable)
Simulation results: 2D linear system

- # bits transmitted vs. time
- Channel communication rate vs. time
- Voltage vs. time
- Total # bits transmitted vs. time
Summary

Contribution:

- Fusion of event-triggered control and information-theoretic control
Summary

Contribution:

• Fusion of event-triggered control and information-theoretic control

• Definition and computation of data capacity under full channel information

Future work:

• Address conservatism in the design

• Stochastic model of channel evolution

• Impact of the available information pattern at the encoder
Summary

Contribution:

- Fusion of event-triggered control and information-theoretic control
- Definition and computation of data capacity under full channel information
- Control under time-varying channels (including blackouts)
- Stabilization with prescribed convergence rate

Future work:

- Address conservatism in the design
- Stochastic model of channel evolution
- Impact of the available information pattern at the encoder
Summary

Contribution:
• Fusion of event-triggered control and information-theoretic control
• Definition and computation of data capacity under full channel information
• Control under time-varying channels (including blackouts)
• Stabilization with prescribed convergence rate

Future work:
• Address conservatism in the design
• Stochastic model of channel evolution
• Impact of the available information pattern at the encoder