Differentially Private Distributed Convex Optimization
via Functional Perturbation

Erfan Nozari

Department of Mechanical and Aerospace Engineering
University of California, San Diego
http://carmenere.ucsd.edu/erfan

July 6, 2016

Joint work with Pavankumar Tallapragada and Jorge Cortés
Distributed Coordination

What if local information is sensitive?
Distributed Coordination

What if local information is sensitive?
Motivating Scenario: Optimal EV Charging

[Han et. al., 2014]
Motivating Scenario: Optimal EV Charging

[Han et. al., 2014]

Central aggregator solves:

\[
\begin{align*}
\text{minimize} & \quad U\left(\sum_{i=1}^{n} r_i\right) \\
\text{subject to} & \quad r_i \in C_i \quad i \in \{1, \ldots, n\}
\end{align*}
\]

- \(U = \) energy cost function
- \(r_i = r_i(t) = \) charging rate
- \(C_i = \) local constraints
Motivating Scenario: Optimal EV Charging
[Han et. al., 2014]

Central aggregator solves:

\[
\begin{align*}
\text{minimize} & \quad U\left(\sum_{i=1}^{n} r_i\right) \\
\text{subject to} & \quad r_i \in C_i \quad i \in \{1, \ldots, n\}
\end{align*}
\]

- \(U = \) energy cost function
- \(r_i = r_i(t) = \) charging rate
- \(C_i = \) local constraints
Myth: Aggregation Preserves Privacy

• Fact: NOT in the presence of side-information

Toy example:

\[
\begin{array}{cc}
1 & 100 \\
2 & 120 \\
n & 90 \\
\end{array}
\]

Database Average = 110

\[
\begin{array}{cc}
2 & 120 \\
n & 90 \\
\end{array}
\]

Side Information

⇒

\[
\begin{array}{c}
d_1 = 100
\end{array}
\]

• Real example: A. Narayanan and V. Shmatikov successfully de-anonymized Netflix Prize dataset (2007)

Side information: IMDB databases!
Myth: Aggregation Preserves Privacy

- Fact: NOT in the presence of side-information

Toy example:

\[
\begin{array}{c|c|c}
1 & 100 \\
2 & 120 \\
\vdots & \vdots \\
n & 90 \\
\end{array}
\]

Database

\[
\begin{array}{c|c|c}
\text{Average} & = & 110 \\
2 & 120 \\
\vdots & \vdots \\
n & 90 \\
\end{array}
\]

Side Information

Real example: A. Narayanan and V. Shmatikov successfully de-anonymized Netflix Prize dataset (2007)

Side information: IMDB databases!
Myth: Aggregation Preserves Privacy

- Fact: NOT in the presence of side-information

<table>
<thead>
<tr>
<th></th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>90</td>
</tr>
</tbody>
</table>

Average $= 110$

- Toy example:

Real example: A. Narayanan and V. Shmatikov successfully de-anonymized Netflix Prize dataset (2007)

Side information: IMDB databases!
Myth: Aggregation Preserves Privacy

- Fact: NOT in the presence of **side-information**

<table>
<thead>
<tr>
<th>Database</th>
<th>Side Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>90</td>
</tr>
</tbody>
</table>

Average = 110

⇒ \(d_1 = 100 \)
Myth: Aggregation Preserves Privacy

- Fact: NOT in the presence of side-information

Toy example:

<table>
<thead>
<tr>
<th>Database</th>
<th>Side Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 100</td>
<td>2 120</td>
</tr>
<tr>
<td>2 120</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
</tr>
<tr>
<td>n 90</td>
<td>2 120</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 120</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n 90</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average = 110 \Rightarrow d_1 = 100

Real example: A. Narayanan and V. Shmatikov successfully de-anonymized Netflix Prize dataset (2007)
Side information: IMDB databases!
Outline

1. DP Distributed Optimization
 - Problem Formulation
 - Impossibility Result

2. Functional Perturbation
 - Perturbation Design

3. DP Distributed Optimization via Functional Perturbation
 - Regularization
 - Algorithm Design and Analysis
Outline

1 DP Distributed Optimization
 • Problem Formulation
 • Impossibility Result

2 Functional Perturbation
 • Perturbation Design

3 DP Distributed Optimization via Functional Perturbation
 • Regularization
 • Algorithm Design and Analysis
Standard additive convex optimization problem:

\[
\begin{align*}
\text{minimize} \quad & f(x) \triangleq \sum_{i=1}^{n} f_i(x) \\
\text{subject to} \quad & G(x) \leq 0 \\
& Ax = b
\end{align*}
\]

Assumption:
- D is compact
- f_i’s are strongly convex and C^2
Problem Formulation
Optimization

Standard additive convex optimization problem:

\[
\begin{align*}
\text{minimize} & \quad f(x) \triangleq \sum_{i=1}^{n} f_i(x) \\
\text{subject to} & \quad G(x) \leq 0 \\
& \quad Ax = b
\end{align*}
\]

Assumption:
- \(D \) is compact
- \(f_i \)'s are strongly convex and \(C^2 \)
Problem Formulation
Optimization

Standard additive convex optimization problem:

\[
\text{minimize}_{x \in X} \quad f(x) \triangleq \sum_{i=1}^{n} f_i(x)
\]

Assumption:
- \(D\) is compact
- \(f_i\)’s are strongly convex and \(C^2\)
Problem Formulation
Optimization

Standard additive convex optimization problem:

\[
\min_{x \in X} f(x) \triangleq \sum_{i=1}^{n} f_i(x)
\]

- A **non-private** solution [Nedic et. al., 2010]:

\[
x_i(k + 1) = \text{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k)))
\]

\[
z_i(k) = \sum_{j=1}^{n} w_{ij} x_j(k)
\]

Assumption:
- \(D \) is compact
- \(f_i \)'s are strongly convex and \(C^2 \)
Standard additive convex optimization problem:

\[
\text{minimize } f(x) \triangleq \sum_{i=1}^{n} f_i(x)
\]

- A non-private solution [Nedic et. al., 2010]:

\[
x_i(k + 1) = \text{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k)))
\]

\[
z_i(k) = \sum_{j=1}^{n} w_{ij} x_j(k)
\]

Assumption:
- \(D \) is compact
- \(f_i \)'s are strongly convex and \(C^2 \)
Problem Formulation

Privacy

- “Information”: $F = (f_i)_{i=1}^n \in \mathcal{F}^n$
Problem Formulation

Privacy

- “Information”: \(F = (f_i)_{i=1}^n \in \mathcal{F}^n \)
- Given \((\mathcal{V}, \| \cdot \|_\mathcal{V})\) with \(\mathcal{V} \subseteq \mathcal{F}\),

Adjacency

\(F, F' \in \mathcal{F}^n \) are \textbf{\(\mathcal{V} \)-adjacent} if there exists \(i_0 \in \{1, \ldots, n\} \) such that

\[
 f_i = f'_i \quad \text{for} \quad i \neq i_0 \quad \text{and} \quad f_{i_0} - f'_{i_0} \in \mathcal{V}
\]
Problem Formulation

Privacy

- “Information”: $F = (f_i)_{i=1}^n \in \mathcal{F}^n$

- Given $(\mathcal{V}, \| \cdot \|_\mathcal{V})$ with $\mathcal{V} \subseteq \mathcal{F}$,

Adjacency

$F, F' \in \mathcal{F}^n$ are \mathcal{V}-adjacent if there exists $i_0 \in \{1, \ldots, n\}$ such that

$$f_i = f'_i \text{ for } i \neq i_0 \quad \text{and} \quad f_{i_0} - f'_{i_0} \in \mathcal{V}$$

- For a random map $\mathcal{M} : \mathcal{F}^n \times \Omega \rightarrow X$ and $\epsilon \in \mathbb{R}_{>0}^n$

Differential Privacy (DP)

\mathcal{M} is ϵ-DP if

$$\forall \mathcal{V} \text{-adjacent } F, F' \in \mathcal{F}^n \quad \forall \mathcal{O} \subseteq X$$

$$\mathbb{P}\{\mathcal{M}(F', \omega) \in \mathcal{O}\} \leq e^{\epsilon_{i_0}} \|f_{i_0} - f'_{i_0}\|_\mathcal{V} \mathbb{P}\{\mathcal{M}(F, \omega) \in \mathcal{O}\}$$
Case Study
Linear Classification with Logistic Loss Function

- Training records: \(\{(a_j, b_j)\}_{j=1}^N \)
 where \(a_j \in [0, 1]^2 \) and
 \(b_j \in \{-1, 1\} \)
- Goal: find the best separating hyperplane \(x^T a = 0 \)
Case Study
Linear Classification with Logistic Loss Function

- Training records: \(\{(a_j, b_j)\}_{j=1}^{N} \)
 where \(a_j \in [0, 1]^2 \) and \(b_j \in \{-1, 1\} \)
- Goal: find the best separating hyperplane \(x^T a = 0 \)

Convex Optimization Problem

\[
x^* = \arg\min_{x \in X} \sum_{j=1}^{N} \left(\ell(x; a_j, b_j) + \frac{\lambda}{2} |x|^2 \right)
\]

- Logistic loss: \(\ell(x; a, b) = \ln(1 + e^{-ba^T x}) \)
Case Study
Linear Classification with Logistic Loss Function

- Training records: \(\{(a_j, b_j)\}_{j=1}^{N} \)
 where \(a_j \in [0, 1]^2 \) and \(b_j \in \{-1, 1\} \)
- Goal: find the best separating hyperplane \(x^T a \)

Convex Optimization Problem

\[
x^* = \arg\min_{x \in X} \sum_{i=1}^{n} \sum_{j=1}^{N_i} \left(\ell(x; a_{i,j}, b_{i,j}) + \frac{\lambda}{2} |x|^2 \right)
\]

- Logistic loss: \(\ell(x; a, b) = \ln(1 + e^{-ba^T x}) \)
Message Perturbation vs. Objective Perturbation

A generic distributed optimization algorithm:

\[x_i^+ = h_i(x_i, x_{-i}) \]
Message Perturbation vs. Objective Perturbation

Message Perturbation:

- Network
 - Message Passing
 - Local State Update
 - $x_i^+ = h_i(x_i, x_{-i})$
 - f_i

Objective Perturbation:

- Network
 - Message Passing
 - Local State Update
 - $x_i^+ = h_i(x_i, x_{-i})$
 - f_i
Message Perturbation vs. Objective Perturbation

Message Perturbation:

Network

Message Passing

\[x_i^+ = h_i(x_i, x_{-i}) \]

Local State Update

Objective Perturbation:

Network

Message Passing

\[x_i^+ = h_i(x_i, x_{-i}) \]

Local State Update
Message Perturbation vs. Objective Perturbation

Message Perturbation:

Message Passing

Local State Update

\[x_i^+ = h_i(x_i, x_{-i}) \]

Objective Perturbation:

Message Passing

Local State Update

\[x_i^+ = h_i(x_i, x_{-i}) \]

Erfan Nozari (UCSD) Differentially Private Distributed Optimization
Impossibility Result

Generic message-perturbing algorithm:

\[x(k + 1) = a_\mathcal{I}(x(k), \xi(k)) \]

\[\xi(k) = x(k) + \eta(k) \]
Impossibility Result

Generic message-perturbing algorithm:

\[x(k + 1) = a_{\mathcal{I}}(x(k), \xi(k)) \]
\[\xi(k) = x(k) + \eta(k) \]

Theorem

If

- The \(\eta \rightarrow x \) dynamics is 0-LAS
- \(\eta_i(k) \sim \text{Lap}(b_i(k)) \) or \(\eta_i(k) \sim \mathcal{N}(0, b_i(k)) \)
- \(b_i(k) \) is \(O\left(\frac{1}{k^p}\right) \) for some \(p > 0 \)

Then no \(\epsilon \)-DP of the information set \(\mathcal{I} \) for any \(\epsilon > 0 \)
Impossibility Result: An Example

Algorithm proposed in [Huang et. al., 2015]:

\[x_i(k + 1) = \text{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k))) \]

\[z_i(k) = \sum_{j=1}^{n} w_{ij} \xi_j(k) \]

\[\xi_j(k) = x_j(k) + \eta_j(k) \]
Algorithm proposed in [Huang et. al., 2015]:

\[x_i(k + 1) = \text{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k))) \]

\[z_i(k) = \sum_{j=1}^{n} w_{ij} \xi_j(k) \]

\[\xi_j(k) = x_j(k) + \eta_j(k) \]
Algorithm proposed in [Huang et. al., 2015]:

\[
x_i(k + 1) = \text{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k)))
\]

\[
z_i(k) = \sum_{j=1}^{n} w_{ij} \xi_j(k)
\]

\[
\xi_j(k) = x_j(k) + \eta_j(k)
\]

- \(\eta_j(k) \sim \text{Lap}(\propto p^k)\)
- \(\alpha_k \propto q^k\) \hspace{1cm} 0 < q < p < 1
Algorithm proposed in [Huang et al., 2015]:

\[x_i(k + 1) = \text{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k))) \]

\[z_i(k) = \sum_{j=1}^{n} w_{ij} \xi_j(k) \]

\[\xi_j(k) = x_j(k) + \eta_j(k) \]

- \(\eta_j(k) \sim \text{Lap}(\alpha_p^k) \)
- \(\alpha_k \propto q^k \) \(0 < q < p < 1 \)

Finite sum
Impossibility Result: An Example

Algorithm proposed in [Huang et. al., 2015]:

- Simulation results for a linear classification problem:

![Graph showing empirical data and theoretical upper bound.](image-url)

- Empirical data
- Linear fit of log $|\tilde{x}^* - x^*|$ against log ϵ
- Theoretical upper bound on $|E[\tilde{x}^*] - x^*|$
Outline

1. DP Distributed Optimization
 - Problem Formulation
 - Impossibility Result

2. Functional Perturbation
 - Perturbation Design

3. DP Distributed Optimization via Functional Perturbation
 - Regularization
 - Algorithm Design and Analysis
State of the Art

- [Chaudhuri et. al., 2011]
 - First proposed “objective perturbation” by adding linear random functions
 - Extended by [Kifer et. al., 2012] to constrained and non-differentiable problems
 - Preserves DP of objective function parameters

- [Zhang et. al., 2012]
 - Proposed objective perturbation by adding sample path of Gaussian stochastic process
 - Preserves DP of objective function parameters

- [Hall et. al., 2013]
 - Proposed objective perturbation by adding quadratic random functions
 - Preserves DP of objective function parameters
State of the Art

- [Chaudhuri et. al., 2011]
 - First proposed “objective perturbation” by adding linear random functions
 - Extended by [Kifer et. al., 2012] to constrained and non-differentiable problems
 - Preserves DP of objective function parameters

- [Zhang et. al., 2012]
 - Proposed objective perturbation by adding sample path of Gaussian stochastic process
 - Preserves DP of objective function parameters
State of the Art

- [Chaudhuri et. al., 2011]
 - First proposed “objective perturbation” by adding linear random functions
 - Extended by [Kifer et. al., 2012] to constrained and non-differentiable problems
 - Preserves DP of objective function parameters

- [Zhang et. al., 2012]
 - Proposed objective perturbation by adding sample path of Gaussian stochastic process
 - Preserves DP of objective function parameters

- [Hall et. al., 2013]
 - Proposed objective perturbation by adding quadratic random functions
 - Preserves DP of objective function parameters
• Hilbert space $\mathcal{H} =$ complete inner-product space

• Orthonormal basis $\{e_k\}_{k \in I} \subset \mathcal{H}$

• If \mathcal{H} is separable:

$$h = \sum_{k=1}^{\infty} \langle h, e_k \rangle e_k$$
Prelim: Hilbert Spaces

- Hilbert space $\mathcal{H} = \text{complete inner-product space}$

- Orthonormal basis $\{e_k\}_{k \in I} \subset \mathcal{H}$

- If \mathcal{H} is separable:

 $$h = \sum_{k=1}^{\infty} \delta_k \langle h, e_k \rangle e_k$$

- For $D \subseteq \mathbb{R}^d$, $L_2(D)$ is a separable Hilbert space $\Rightarrow \mathcal{F} = L_2(D)$
• Φ: coefficient sequence $\delta \rightarrow$ function $h = \sum_{k=1}^{\infty} \delta_k e_k$

• Adjacency space:

$$\mathcal{V}_q = \{ \Phi(\delta) \mid \sum_{k=1}^{\infty} (k^q \delta_k)^2 < \infty \}$$
Functional Perturbation via Laplace Noise

- Φ: coefficient sequence $\delta \rightarrow$ function $h = \sum_{k=1}^{\infty} \delta_k e_k$

- Adjacency space:
 \[V_q = \{ \Phi(\delta) \mid \sum_{k=1}^{\infty} (k^q \delta_k)^2 < \infty \} \]

- Random map:
 \[M(f, \eta) = \Phi (\Phi^{-1}(f) + \eta) = f + \Phi(\eta) \]

 Functional Perturbation
Functional Perturbation via Laplace Noise

- Φ: coefficient sequence $\delta \rightarrow$ function $h = \sum_{k=1}^{\infty} \delta_k e_k$

- Adjacency space:
 $$\mathcal{V}_q = \{ \Phi(\delta) \mid \sum_{k=1}^{\infty} (k^q \delta_k)^2 < \infty \}$$

- Random map:
 $$\mathcal{M}(f, \eta) = \Phi(\Phi^{-1}(f) + \eta) = f + \Phi(\eta)$$

Theorem

For $\eta_k \sim \text{Lap}(\frac{\gamma}{k^p})$, $q > 1$, and $p \in \left(\frac{1}{2}, q - \frac{1}{2}\right)$, \mathcal{M} guarantees ϵ-DP with

$$\epsilon = \frac{1}{\gamma} \sqrt{\zeta(2(q - p))}$$
Outline

1. DP Distributed Optimization
 - Problem Formulation
 - Impossibility Result

2. Functional Perturbation
 - Perturbation Design

3. DP Distributed Optimization via Functional Perturbation
 - Regularization
 - Algorithm Design and Analysis
Resilience to Post-processing

Algorithm sketch:

1. Each agent **perturbs its own** objective function (offline)
2. Agents **participate in an arbitrary** distributed optimization algorithm with perturbed functions (online)
Resilience to Post-processing

Algorithm sketch:

1. Each agent **perturbs its own** objective function (offline)
2. Agents **participate in an arbitrary** distributed optimization algorithm with perturbed functions (online)

- \(\mathcal{M} : L_2(D)^n \times \Omega \rightarrow L_2(D)^n \)
- \(\mathcal{F} : L_2(D)^n \rightarrow \mathcal{X} \), where \((\mathcal{X}, \Sigma_\mathcal{X})\) is an arbitrary measurable space

Corollary (special case of [Ny & Pappas 2014, Theorem 1])

If \(\mathcal{M} \) is \(\epsilon \)-DP, then \(\mathcal{F} \circ \mathcal{M} : L_2(D)^n \times \Omega \rightarrow \mathcal{X} \) is \(\epsilon \)-DP.
Ensuring Regularity of Perturbed Functions

- $\hat{f}_i = M(f_i, \eta_i)$ may be discontinuous/non-convex/...
Ensuring Regularity of Perturbed Functions

- \(\hat{f}_i = M(f_i, \eta_i) \) may be discontinuous/non-convex/...

- \(S = \{ \text{Regular functions} \} \subset C^2(D) \subset L_2(D) \)
Ensuring Regularity of Perturbed Functions

- \(\hat{f}_i = M(f_i, \eta_i) \) may be discontinuous/non-convex/...

- \(S = \{ \text{Regular functions} \} \subset C^2(D) \subset L_2(D) \)

- **Ensuring Smoothness:** \(C^2(D) \) is dense in \(L_2(D) \) so

\[
\forall \varepsilon_i > 0 \text{ pick } \hat{f}_i^s \in C^2(D) \text{ such that } \| \hat{f}_i - \hat{f}_i^s \| < \varepsilon_i
\]
Ensuring Regularity of Perturbed Functions

- $\hat{f}_i = M(f_i, \eta_i)$ may be discontinuous/non-convex/...

- $S = \{\text{Regular functions}\} \subset C^2(D) \subset L_2(D)$

- **Ensuring Smoothness:** $C^2(D)$ is dense in $L_2(D)$ so
 \[\forall \varepsilon_i > 0 \text{ pick } \hat{f}_i^s \in C^2(D) \text{ such that } \|\hat{f}_i - \hat{f}_i^s\| < \varepsilon_i \]

- **Ensuring Regularity:**
 \[\tilde{f}_i = \text{proj}_S(\hat{f}_i^s) \]

Proposition

S is convex and closed relative to $C^2(D)$
Algorithm

1. Each agent **perturbs** its function:

\[
\hat{f}_i = \mathcal{M}(f_i, \eta_i) = f_i + \Phi(\eta_i), \quad \eta_{i,k} \sim \text{Lap}(b_{i,k}), \quad b_{i,k} = \frac{\gamma_i}{k p_i}
\]

2. Each agent **selects** \(\hat{f}_i^s \in S_0 \) such that

\[
\|\hat{f}_i - \hat{f}_i^s\| < \varepsilon_i
\]

3. Each agent **projects** \(\hat{f}_i^s \) onto \(S \):

\[
\tilde{f}_i = \text{proj}_S(\hat{f}_i^s)
\]

4. Agents **participate** in *any* distributed optimization algorithm with \(\tilde{f}_i \)
Algorithm

1. Each agent **perturbs** its function:

\[\hat{f}_i = \mathcal{M}(f_i, \eta_i) = f_i + \Phi(\eta_i), \quad \eta_i, k \sim \text{Lap}(b_{i,k}), \quad b_{i,k} = \frac{\gamma_i}{k p_i} \]

2. Each agent **selects** \(\hat{f}_i^s \in S_0 \) such that

\[\| \hat{f}_i - \hat{f}_i^s \| < \varepsilon_i \]

3. Each agent **projects** \(\hat{f}_i^s \) onto \(S \):

\[\tilde{f}_i = \text{proj}_S(\hat{f}_i^s) \]

4. Agents **participate** in any distributed optimization algorithm with \((\tilde{f}_i)_{i=1}^n \)
Accuracy Analysis

- Set of "regular" functions:

\[S = \{ h \in C^2(D) \mid \alpha I_d \leq \nabla^2 h(x) \leq \beta I_d \text{ and } |\nabla h(x)| \leq \bar{u} \} \]

Lemma (\(\kappa \)-Lipschitzness of argmin)

For \(f, g \in S \),

\[
\left| \argmin_{x \in X} f - \argmin_{x \in X} g \right| \leq \kappa_{\alpha, \beta} (\|f - g\|)
\]
Accuracy Analysis

- Set of “regular” functions:

\[S = \{ h \in C^2(D) \mid \alpha I_d \leq \nabla^2 h(x) \leq \beta I_d \text{ and } |\nabla h(x)| \leq \bar{u} \} \]

Lemma (\(\kappa \)-Lipschitzness of \(\text{argmin} \))

For \(f, g \in S \),

\[\left| \text{argmin}_{x \in X} f - \text{argmin}_{x \in X} g \right| \leq \kappa_{\alpha, \beta}(\| f - g \|) \]

- Define

\[\tilde{x}^* = \text{argmin}_{x \in X} \sum_{i=1}^{n} \tilde{f}_i \quad \text{and} \quad x^* = \text{argmin}_{x \in X} \sum_{i=1}^{n} f_i \]

Theorem (Accuracy)

\[\mathbb{E} |\tilde{x}^* - x^*| \leq \sum_{i=1}^{n} \kappa_n \left(\frac{\zeta(q_i)}{\epsilon_i} \right) + \kappa_n(\epsilon_i) \]
Simulation Results
Linear Classification with Logistic Loss Function

Theoretical bound
2nd order
6th order
14th order

$|\tilde{x}^* - x^*|$

Empirical data
Piecewise linear fit

Theoretical bound

Erfan Nozari (UCSD) Differentially Private Distributed Optimization
Conclusions and Future Work

In this talk, we

• Proposed a definition of DP for functions
• Illustrated a fundamental limitation of message-perturbing strategies
• Proposed the method of functional perturbation
• Discussed how functional perturbation can be applied to distributed convex optimization

Future work includes

• Relaxation of the smoothness, convexity, and compactness assumptions
• Comparing the numerical efficiency of different bases for L^2
• Characterizing the expected sub-optimality gap of the algorithm and the optimal privacy-accuracy trade-off curve
• Further understanding the appropriate scales of privacy parameters for particular applications
Conclusions and Future Work

In this talk, we

- Proposed a definition of DP for functions
- Illustrated a fundamental limitation of message-perturbing strategies
- Proposed the method of functional perturbation
- Discussed how functional perturbation can be applied to distributed convex optimization

Future work includes

- relaxation of the smoothness, convexity, and compactness assumptions
- comparing the numerical efficiency of different bases for L_2
- characterizing the expected sub-optimality gap of the algorithm and the optimal privacy-accuracy trade-off curve
- further understanding the appropriate scales of privacy parameters for particular applications
Questions and Comments

Full results of this talk available in:

Formal Definition
in original context [Dwork et. al., 2006]

Context:

- \(D \in \mathcal{D} \): A database of records
- Adjacency: \(D_1, D_2 \in \mathcal{D} \) are adjacent if they differ by at most 1 record
- \((\Omega, \Sigma, \mathbb{P})\): Probability space
- \(q : \mathcal{D} \rightarrow X \): (Honest) query function
- \(\mathcal{M} : \mathcal{D} \times \Omega \rightarrow X \): Randomized/sanitized query function
- \(\epsilon > 0 \): Level of privacy

Definition
\(\mathcal{M} \) is \(\epsilon \)-DP if

\[
\forall \text{ adjacent } D_1, D_2 \in \mathcal{D} \quad \forall O \subseteq X \quad \mathbb{P}\{\mathcal{M}(D_1) \in O\} \leq e^\epsilon \mathbb{P}\{\mathcal{M}(D_2) \in O\}
\]

- Adjacency is symmetric \(\Rightarrow\)
 \[
 \begin{cases}
 \mathbb{P}\{\mathcal{M}(D_1) \in O\} \leq e^\epsilon \mathbb{P}\{\mathcal{M}(D_2) \in O\} \\
 \mathbb{P}\{\mathcal{M}(D_2) \in O\} \leq e^\epsilon \mathbb{P}\{\mathcal{M}(D_1) \in O\}
 \end{cases}
 \]
Formal Definition: Geometric Interpretation in original context

Definition

\(\mathcal{M} \) is \(\epsilon \)-DP if

\[
\forall \text{ adjacent } D_1, D_2 \in \mathcal{D} \quad \forall \mathcal{O} \subseteq X \quad \mathbb{P}\{\mathcal{M}(D_1) \in \mathcal{O}\} \leq e^\epsilon \mathbb{P}\{\mathcal{M}(D_2) \in \mathcal{O}\}
\]
Operational Meaning of DP

A binary decision example [Geng&Pramod, 2013]

- Adversary’s decision = \[
\begin{cases}
\text{TRUE} & \text{if } \mathcal{M}(D,\omega) \in \mathcal{O} \\
\text{FALSE} & \text{if } \mathcal{M}(D,\omega) \in \mathcal{O}^c
\end{cases}
\]

- MD = \{\mathcal{M}(D_1,\omega) \in \mathcal{O}^c\}
- FA = \{\mathcal{M}(D_2,\omega) \in \mathcal{O}\}

- If \mathcal{M} is \epsilon-DP then

\[
\begin{align*}
\mathbb{P}\{\mathcal{M}(D_1,\omega) \in \mathcal{O}\} &\leq e^{\epsilon}\mathbb{P}\{\mathcal{M}(D_2,\omega) \in \mathcal{O}\} \\
\mathbb{P}\{\mathcal{M}(D_2,\omega) \in \mathcal{O}^c\} &\leq e^{\epsilon}\mathbb{P}\{\mathcal{M}(D_1,\omega) \in \mathcal{O}^c\}
\end{align*}
\]

\[
\Rightarrow p_{\text{MD}}, p_{\text{FA}} \geq \frac{e^{\epsilon} - 1}{e^{2\epsilon} - 1}
\]
Generalizing the Definition: Using Metrics
[Chatzikokolakis et. al., 2013]

- If D_1, D_2 differ in N elements then

 \[\mathbb{P}\{\mathcal{M}(D_1, \omega) \in \mathcal{O}\} \leq e^{N\epsilon} \mathbb{P}\{\mathcal{M}(D_2, \omega) \in \mathcal{O}\} \]

- $d : \mathcal{D} \times \mathcal{D} \rightarrow [0, \infty)$ metric on \mathcal{D}

Definition –revisited

\mathcal{M} gives/preserves ϵ-differential privacy if

\[\forall D_1, D_2 \in \mathcal{D} \quad \forall \mathcal{O} \subseteq X \text{ we have} \quad \mathbb{P}\{\mathcal{M}(D_1, \omega) \in \mathcal{O}\} \leq e^{\epsilon d(D_1, D_2)} \mathbb{P}\{\mathcal{M}(D_2, \omega) \in \mathcal{O}\} \]