Jorge Cortés

Professor





Distributed gradient ascent of random fields by robotic sensor networks
J. Cortés
Proceedings of the IEEE Conference on Decision and Control, New Orleans, Louisiana, USA, pp. 3120-3126


Abstract

This paper considers robotic sensor networks performing spatially-distributed estimation tasks. A robotic network equipped with footprint sensors is deployed in an environment of interest, and takes successive measurements of a physical process modeled as a spatial random field. Taking a Bayesian perspective on the kriging interpolation technique from geostatistics, we design the \algoDK to estimate the distribution of the random field and of its gradient. The proposed algorithm makes use of a novel distributed strategy to compute weighted least squares estimates when measurements are spatially correlated. This strategy results from the combination of the Jacobi overrelaxation method with dynamic consensus algorithms. The network agents use the information gained on the spatial field to implement a gradient ascent coordination algorithm, whose convergence is analyzed via stochastic Lyapunov functions in the absence of measurement errors. We illustrate our results in simulation.

pdf   |   ps.gz

Mechanical and Aerospace Engineering, University of California, San Diego
9500 Gilman Dr, La Jolla, California, 92093-0411

Ph: 1-858-822-7930
Fax: 1-858-822-3107

cortes at ucsd.edu
Skype id: jorgilliyo