Jorge Cortés

Professor





Distributed map merging with consensus on common information
R. Aragüés, J. Cortés, C. Sagüés
Proceedings of the European Control Conference, Zürich, Switzerland, 2013, pp. 736-741


Abstract

Sensor fusion methods combine noisy measurements of common variables observed by several sensors, typically by averaging information matrices and vectors of the measurements. Some sensors may have also observed exclusive variables on their own. Examples include robots exploring different areas or cameras observing different parts of the scene in map merging or multi-target tracking scenarios. Iteratively averaging exclusive information is not efficient, since only one sensor provides the data, and the remaining ones echo this information. This paper proposes a method to average the information matrices and vectors associated only to the common variables. Sensors use this averaged common information to locally estimate the exclusive variables. Our estimates are equivalent to the ones obtained by averaging the complete information matrices and vectors. The proposed method preserves properties of convergence, unbiased mean, and consistency, and improves the memory, communication, and computation costs.

pdf

Mechanical and Aerospace Engineering, University of California, San Diego
9500 Gilman Dr, La Jolla, California, 92093-0411

Ph: 1-858-822-7930
Fax: 1-858-822-3107

cortes at ucsd.edu
Skype id: jorgilliyo