Generalized multicircumcenter trajectories for optimal design under near-independence

Rishi Graham Jorge Cortés

Abstract—This work deals with trajectory optimization for a network of robotic sensors sampling a spatio-temporal random field. We examine the problem of minimizing over the space of network trajectories the maximum predictive variance of the estimator. This is a high-dimensional, multi-modal, nonsmooth optimization problem, known to be NP-hard even for static fields and discrete design spaces. Under an asymptotic regime of near-independence between distinct sample locations, we show that the solutions to a novel generalized disk-covering problem are solutions to the optimal sampling problem. This result transforms the search for the optimal trajectories into a geometric optimization problem. Constrained versions of the latter are also of interest as they can accommodate trajectories that satisfy a maximum velocity restriction on the robots. We characterize the solution for the unconstrained and constrained versions of the problem as generalized multicircumcenter trajectories, and provide distributed algorithms to find them.

I. INTRODUCTION

Intelligent data collection is an exciting field with many scientific, industrial, and safety applications. Path planning, either a priori or online, is an important part of any data collection mission. In this paper, we examine optimal trajectories for sampling a spatio-temporal random field modeled as a Gaussian process. We assume that the mean and covariance of the field are known, and concentrate on minimizing the maximum predictive variance.

Literature review: There is a rich literature on the use of model uncertainty to drive the placement of sensing devices, e.g., [1], [2], [3]. Most of this research has focused on choosing from discrete sets of hypothetical sampling locations, and until recently all of it has made use of centralized computational techniques. Even choosing a fixed number of sampling locations from a discrete set has been shown to be NP-hard [4]. In cooperative control, various works consider mobile sensor networks performing spatial estimation tasks. [5], [6] consider deterministic models with a stochastic measurement error term. [7] addresses the multiple robot path planning problem by choosing way points from a discrete set of possible sensing locations. In [8], a deterministic model is used, where the random elements come as unknown model parameters, and localization error is included. The work [9] uses a Gaussian process model where all information is globally available via all-to-all communication. [10] considers optimal sampling trajectories from a parameterized set of paths. [11] discusses the tracking of level curves in a noisy scalar field.

Statement of contributions: Our first contribution pertains to the characterization of the solutions of the optimal sampling problem for minimizing the prediction variance. We introduce a weighted distance metric called the correlation distance and define a novel generalized disk-covering function based on it. We show that its minimization is equivalent to minimizing the maximum prediction variance in the limit of near-independence, thus turning the optimization problem into a geometric one. Our next contributions all pertain to the solution of this geometric problem. We first introduce a form of generalized Voronoi partition based on the maximal correlation between a given predictive location and the samples. Assuming a fixed network trajectory, we show that this partition minimizes the maximal correlation distance over all partitions. We next define multicircumcenter trajectories, which minimize the maximal correlation distance over all trajectories, for a fixed partition. The combination of these two results gives rise to the optimal trajectories for the correlation distance disk-covering problem. The final stage of our solution is to define an extension of the maximal correlation partition which takes into account the positions of consecutive samples taken by the same robotic agent. We show that these constrained multicenter trajectories optimize the correlation distance disk-covering problem over the set of distance-constrained trajectories. Finally, we present a version of Lloyd’s algorithm which enables the network to arrive at locally optimal trajectories. This may be performed at any step of the experiment to optimize the remainder of the trajectories as new information arrives. For reasons of space, all proofs are omitted and will appear elsewhere.

II. PRELIMINARIES

We present here some useful notation. Let \(\mathbb{R} \), \(\mathbb{R}_{>0} \) and \(\mathbb{R}_{\geq 0} \) denote the set of reals, positive reals and nonnegative reals, respectively. Given \(D \subset \mathbb{R}^d \), \(d \in \mathbb{N} \), we use the shorthand notation \(D_\epsilon = D \times \mathbb{R}_{\geq 0} \). For \(p \in \mathbb{R}^d \) and \(r \in \mathbb{R}_{>0} \), let \(B(p, r) \) denote the closed ball of radius \(r \) centered at \(p \). For a set \(W \), we denote by \(|W|\), \(\text{bd}(W) \), \(\text{int}(W) \), and \(\text{co}(W) \) its cardinality, boundary, interior, and convex hull, respectively. A convex polytope is the convex hull of a finite point set. For a bounded set \(W \subset \mathbb{R}^d \), \(\text{CC}(W) \) denotes the circumcenter of \(W \), i.e., the center of the smallest-radius \(d \)-sphere enclosing \(W \). Finally, \(\mathcal{P}(W) \) denotes the collection of subsets of \(W \).

A. Nonsmooth analysis

Here we present some useful notions from nonsmooth analysis following [12]. A function \(f : \mathbb{R}^d \to \mathbb{R} \) is locally Lipschitz at \(s \in \mathbb{R}^d \) if there exist positive constants \(L_s \) and \(\epsilon \)

Rishi Graham is with the Department of Applied Mathematics and Statistics, University of California, Santa Cruz. rishig@ams.ucsc.edu
Jorge Cortés is with the Department of Mechanical and Aerospace Engineering, University of California, San Diego, cortes@ucsd.edu
such that $|f(y) - f(y')| \leq L_y \|y - y'\|$ for all $y, y' \in \overline{B}(s, \epsilon)$. f is locally Lipschitz on $W \subseteq \mathbb{R}^d$ if it is locally Lipschitz at s, for all $s \in W$. $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is regular at $s \in \mathbb{R}^d$ if for all $v \in \mathbb{R}^d$, the right and generalized directional derivatives of f at s in the direction of v, coincide. For a given closed, convex set $G \subset \mathbb{R}^d$, let $N_G(x) = \{y \in \mathbb{R}^d \mid < y, x - z > \geq 0, \forall z \in G\}$ be the normal cone of G at x.

B. Spatio-temporal simple kriging

Let Z denote a spatio-temporal process taking values on a convex polytope $D \subset \mathbb{R}^d$ of the form

$$Z(s, t) = \mu(s, t) + \omega(s, t), \quad (s, t) \in D_c,$$

where μ is a known mean value function, and ω is a zero mean random space-time process with known separable covariance, which exhibits second-order stationarity and isotropy in the spatial dimensions, i.e.,

$$\text{Cov}[\omega(s_1, t_1), \omega(s_j, t_j)] = g_0(\|s_1 - s_j\|)g(t_1, t_j),$$

for correlation functions $g_s : \mathbb{R}_{\geq 0} \rightarrow (0, 1]$ and $g_t : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \rightarrow [0, 1]$, and constant $g_0 \in \mathbb{R}_{\geq 0}$. We assume that g_s is strictly decreasing and continuously differentiable with nonzero derivative except possibly at 0.

Let $n \in \mathbb{Z}_{\geq 0}$ sensing agents take samples at a sequence of discrete timesteps $\{1, \ldots, k_{\max}\} \subset \mathbb{Z}_{\geq 0}$. Let $S_t = (s_{1}^{(t)}, \ldots, s_{n}^{(t)})^T \in D_{\text{max}}$ denote the spatial locations of samples taken over the course of the experiment by the ith agent, and let $S = (S_1^T, \ldots, S_n^T)^T \in (D_{\text{max}})^n$ denote the locations of all samples taken by the network. Let $I_{\text{samp}} = \{1, \ldots, n\} \times \{1, \ldots, k_{\max}\}$. We refer often to vectors of elements indexed by both agent and timestep, such as the elements of S. To save space, we use the notation $\{a_1, \ldots, a_n\} = (a_1^{(k_{\max})}, \ldots, a_n^{(k_{\max})})$.

Let $Y = (y_1^{(k)}, \ldots, y_n^{(k)})^T \in (\mathbb{R}^{\text{max}})^n$ denote the values of all samples taken at locations S. We assume that the data are corrupted with a measurement error so that,

$$y_i^{(k)} = Z(s_i^{(k)}, k) + \epsilon_i, \quad \epsilon_i \overset{i.i.d.}{\sim} \text{Normal}(0, \tau^2),$$

where $\tau^2 > 0$. The covariance between $y_i^{(k)}$ and $y_j^{(l)}$ is

$$\text{Cov}[y_i^{(k)}, y_j^{(l)}] = \begin{cases} g_0(g_0(g_{k_{\max}} k) + \tau^2), & \text{if } (i, k) = (j, l) \\ \text{Cov}(g_0(s_{1}^{(k_{\max})} s_{j}^{(k_{\max})})g_k(l), \text{ otherwise.} & \end{cases}$$

Let $\Sigma = \Sigma(S)$ denote the covariance matrix of Y, where bold face is used to denote explicit dependence on S.

The simple kriging predictor at $(s, t) \in D_c$ minimizes the error variance $\sigma^2(s, t; S) = \text{Var}(Z(s, t) - p(s, t; Y))$ among all unbiased predictors of the form $p(s, t; Y) = \sum_{i=1}^{n} \sum_{k=1}^{k_{\max}} \mu^{(k)} y_i^{(k)} + a$, $a \in \mathbb{R}$. The simple kriging predictor at $(s, t) \in D_c$ corresponds then to the Linear Unbiased Minimum Variance Estimator (LUMVE),

$$\hat{p}_\text{sk}(s, t; Y) = \mu(s, t) + c^T \Sigma^{-1} (Y - \mu),$$

with $\mu = (\mu(s_1^{(1)}, \ldots, \mu(x_{n}^{(k_{\max})}, k_{\max})^T, c = \text{Cov}(Z(s, t), Y) \in (\mathbb{R}^{\text{max}})^n$, and error variance,

$$\sigma^2(s, t; S) = g_0(g_0(g_{k_{\max}}) g_k(t, t) - c^T \Sigma^{-1} c.$$
zero. It therefore admits an inverse, $\phi^{-1} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$. The correlation between a sample at step k and prediction at step k_{max} induces the weighted distance,

$$\delta_k(s_1, s_2) = \phi(||s_1 - s_2||) + w(k). \quad (6)$$

We refer to δ_k as the correlation distance associated with sample time k, and note that $\delta_k(s_i, s_i^{(k)}) = -\log (g_i(||s - s_i^{(k)}||)g_i(k_{\text{max}}, k))$.

Let S_{unique} be the following set of possible trajectories, which ensures the spatio-temporal uniqueness of any samples that achieve the maximal correlation distance from any predictive location,

$$S_{\text{unique}} = \{ s = (s_1^{(1)}, \ldots, s_n^{(k_{\text{max}})})^T \in (D^{k_{\text{max}}})^n \mid \mathcal{A}(i,k) \}.$$

We refer to \mathcal{H} as the correlation distance disk-covering function, which ensures the spatio-temporal uniqueness of any samples that achieve the maximal correlation distance from any predictive location,

$$S_{\text{unique}} = \{ s = (s_1^{(1)}, \ldots, s_n^{(k_{\text{max}})})^T \in (D^{k_{\text{max}}})^n \mid \mathcal{A}(i,k) \}.$$

Theorem IV.1 (Global minimizers of \mathcal{M} under near-independence) Let $H : (D^{k_{\text{max}}})^n \to \mathbb{R}$ denote the correlation distance disk-covering function, defined by

$$H(S) = \max_{s \in D} \{ \min_{i,k \in I_{\text{samp}}} \{ \delta_k(s, s_i^{(k)}) \} \}. \quad (7)$$

For $\Omega \subset (D^{k_{\text{max}}})^n$ compact, let $S_{\text{mcc}} \in \Omega$ be a global minimizer of the correlation distance disk-covering function H over Ω. Further assume that $S_{\text{mcc}} \in S_{\text{unique}}$. Then, as $\alpha \to \infty$, S_{mcc} asymptotically globally optimizes $\mathcal{M}^{(\alpha)}$ over Ω, that is, $\mathcal{M}^{(\alpha)}(S_{\text{mcc}})$ approaches a global minimum over Ω.

The generality of Ω in Theorem IV.1 allows us to apply the result to two situations of particular importance. First, we may restrict the samples to feasible trajectories based on limitations on the agents’ motion, and their initial positions, which we call anchor points. We define the range-based constraint set, $\Omega_{\text{range}} \subset (D^{k_{\text{max}}})^n$ as, $\Omega_{\text{range}} = \prod_{i=1}^n \Omega_{\text{range}_i}$, where

$$\Omega_{\text{range}_i} = \{ (s_1^{(1)}, \ldots, s_i^{(k_{\text{max}})})^T \in D^{k_{\text{max}}} \mid ||s_i^{(1)} - p_i(0)|| \leq u_{\text{max}} \quad \text{and} \quad ||s_i^{(k)} - s_i^{(k-1)}|| \leq u_{\text{max}}, \forall k \in \{2, \ldots, k_{\text{max}}\} \}.$$

Second, a change in mission parameters at time $k - 1$, $k \in \{2, \ldots, k_{\text{max}}\}$, might prompt optimization over just those locations not yet sampled, i.e., $\Omega_{\text{range}_i} = \prod_{i=1}^n \Omega_{\text{range}_i}$, where

$$\Omega_{\text{range}_i} = \{ (s_1^{(1)}, \ldots, s_i^{(k_{\text{max}})})^T \in D^{k_{\text{max}}-k+1} \mid ||s_i^{(1)} - p_i(k-1)|| \leq u_{\text{max}} \quad \text{and} \quad ||s_i^{(k')} - s_i^{(k-1)}|| \leq u_{\text{max}}, \forall k' \in \{k+1, \ldots, k_{\text{max}}\} \}.$$

Theorem IV.1 shows that the optimization of the maximum error variance is equivalent to a geometric optimization problem in the near-independence range.

V. MAXIMAL CORRELATION PARTITION

Here, we introduce the maximal correlation partition associated to a network trajectory. A partition of D is a collection of compact subsets, $W = \{W_1^{(1)}, \ldots, W_n^{(k_{\text{max}})}\}$ with disjoint interiors whose union is D. For any $S \in S_{\text{unique}}$, let $\mathcal{M}_i(S) = (\mathcal{M}_i^{(1)}(S), \ldots, \mathcal{M}_n^{(k_{\text{max}})}(S))$ denote the maximal correlation partition defined by

$$\mathcal{M}_i^{(k)}(S) = \{ s \in D \mid \delta_k(s, s_i^{(k)}) \leq \delta_k(s, s_l^{(l)}), \forall (j,l) \neq (i,k) \}. \quad (10)$$

This partition corresponds to a generalized Voronoi partition [15] for distance measure ϕ and weights given by w. In general, the maximal correlation regions are neither convex nor star-shaped. Depending on the weights and locations, $\mathcal{M}_i^{(k)}(S)$ might be empty for some i. Let $I : \mathcal{P}(D) \to \{1, \ldots, n * k_{\text{max}}\}$ map a partition to the number of nonempty cells it contains, which we term the index of the partition.

For $S \in S_{\text{unique}}$, the correlation distance disk-covering function can be restated as,

$$H(S) = \max_{(i,k) \in I_{\text{samp}}} \{ \max_{s \in \mathcal{M}_i^{(k)}(S)} \{ \delta_k(s, s_i^{(k)}) \} \}. \quad (11)$$

This expression is important because it shows how H has a double dependence on the network trajectory Θ through the value of the correlation distance and through the maximal correlation partition. This motivates us to define an extension of H as follows: for a given sample vector $S \in (D^{k_{\text{max}}})^n$ and a partition $W = \{W_1^{(1)}, \ldots, W_n^{(k_{\text{max}})}\} \subset \mathcal{P}(D)$ of the predictive space, define $H_W : (D^{k_{\text{max}}})^n \to \mathbb{R}$ by

$$H_W(S) = \max_{(i,k) \in I_{\text{samp}}} \{ \max_{s \in \mathcal{M}_i^{(k)}(S)} \{ \delta_k(s, s_i^{(k)}) \} \}, \quad (12)$$

Note that if $S \in S_{\text{unique}}$, then $H(S) = H_{\mathcal{M}_i(S)}(S)$. This function is particularly useful in our search for the optimizers of H because it allows us to decouple the two dependencies of this function on the network trajectory.

Proposition V.1 (H-optimality of the maximal correlation partition) For any $S \in S_{\text{unique}}$ and any partition $W \subset \mathcal{P}(D)$ of D with $I(W) \leq I(\mathcal{M}_i(S))$, one has that $H(S) \leq H_W(S)$, that is, the maximal correlation partition $\mathcal{M}_i(S)$ is optimal for H among all partitions of D of less than or equal index.

Proposition V.1 implies that, in order to fully characterize the optimizers of H, it is sufficient to characterize the optimizers of H_W for a fixed arbitrary partition. The latter formulation is advantageous because of the single dependence of the value of H_W on the network trajectory.

VI. UNCONSTRAINED OPTIMAL TRAJECTORIES FOR A GIVEN PARTITION

Our objective is to characterize the optimal network trajectories of H_W for a fixed partition W of D. Rewrite (12) as

$$H_W(S) = \max_{(i,k) \in I_{\text{samp}}} \{ \mathcal{M}_i^{(k)}(S_i^{(k)}) \}.$$
In the following result, let $\overline{C}(W, s) = CC(W)$ if $W \neq \emptyset$, and $\overline{C}(W, s) = s$ otherwise, and let $\overline{C}(W, S) = (\overline{C}(W_1, s_1^{(1)}), \ldots, \overline{C}(W_n, s_n^{(kmax)}))^T$ denote a vector of such circumcenter locations.

Proposition VI.1 (H-W-optimal trajectories) For $S = (s_1^{(1)}, \ldots, s_n^{(kmax)})^T \in S_{unique}$, a partition $W = \{W_1^{(1)}, \ldots, W_n^{(kmax)}\} \subset \mathcal{P}(\mathcal{D})$ of \mathcal{D}, and $\overline{C}(W, S) \leq \overline{C}(W, S)$, i.e., the circumcenter locations $\overline{C}(W, S)$ are optimal for \mathcal{H}_W.

The combination of Propositions V.1 and VI.1 allows us to provide the following characterization of the optimizers of \mathcal{H}.

Proposition VI.2 (Generalized multicircumcenter trajectories optimize \mathcal{H}) Consider $S = (s_1^{(1)}, \ldots, s_n^{(kmax)})^T \in (\mathcal{D}^{kmax})^n$ such that $s_i^{(k)} = CC(MC_i^k(S))$ for each $(i, k) \in I_{samp}$ with $MC_i^k(S) \neq \emptyset$. Then S is a local minimizer of \mathcal{H} over $(\mathcal{D}^{kmax})^n$. We call such a trajectories a generalized multicircumcenter trajectory. Moreover, if $\overline{I}(MC(S)) = n + k_{max}$, then S is a global minimizer of \mathcal{H} over $(\mathcal{D}^{kmax})^n$.

VII. RANGE-CONSTRAINED OPTIMAL TRAJECTORIES FOR A GIVEN PARTITION

Here, our objective is to characterize the optimizers of \mathcal{H}_W over Ω_{Rg} for a fixed partition \mathcal{W}. Let $\mathcal{W}_i = \{W_i^{(1)}, \ldots, W_i^{(kmax)}\}$ denote the elements of \mathcal{W} assigned to the samples in the trajectory of R_i. We may write

$$\mathcal{H}_W(S) = \max_{i \in \{1, \ldots, n\}, W_i \neq \emptyset} \mathcal{H}_W(S_i),$$

where $\mathcal{H}_W(S_i) = \max_{k \in \{1, \ldots, k_{max}\}, \mathcal{W}_i \neq \emptyset} \{MC_i^k(S_i)\}$. The condition $\mathcal{W}_i \neq \emptyset$ indicates that there is at least one nonempty $W_i^{(k)} \in \mathcal{W}_i$. The above expression shows that, for a fixed partition, minimizing \mathcal{H}_W over the space of network trajectories is equivalent to (independently) minimizing each \mathcal{H}_W over the space of trajectories of the robot R_i. Hence, we structure our discussion in three parts. First, we deal with the single sample problem. Then, we find an optimal sampling trajectory for a single agent. Finally, we combine individual agent trajectories into a network trajectory.

A. Single sample constrained problem

We consider the single sample problem over a general closed convex constraint set.

Proposition VII.1 (Constrained minimizers of $MC_i^k(S)$) Assume that $W_i^{(k)} \neq \emptyset$. Let $\Gamma \subset \mathbb{R}^d$ be closed and convex. Then a point $s^* \in \Gamma$ is the unique minimizer of $MC_i^k(S)$ over Γ iff $0 \in \partial MC_i^k(s^*) + N_{\Gamma}(s^*)$.

Let us now specify the range based constraint set for $s_i^{(k)}$. The set of constraining locations of $(i, k) \in I_{samp}$ are the locations of robot R_i at sample times $k − 1$ and $k + 1$.

$$S_{cs}(k, S_i) = \{p(k') | k' \in K_{cs}(k)\},$$

where

$$K_{cs}(k) = \{k - 1, k + 1\} \cap \{0, \ldots, k_{max}\}.$$

Note that in all but the initial anchor point, this set corresponds to the sample locations immediately preceding and following the (i, k)th sample. Define $\Gamma^k : \mathcal{D}^{kmax} \rightarrow \mathcal{P}(\mathbb{R}^d)$,

$$\Gamma^k(S_i) = \bigcap_{s \in S_{cs}(k, S_i)} \mathcal{B}(s, u_{max}).$$

The set $\Gamma^k(S_i)$ corresponds to Ω_{Rg} with all other samples fixed in space. Restricting $S_i^{(k)}$ to $\Gamma^k(S_i)$ ensures that R_i does not violate the maximum distance requirement u_{max}.

To state the main result of this section, we find it useful to introduce an extension of the set $W_i^{(k)}$ which incorporates the position of sample (i, k) relative to $\Gamma^k(S_i)$. To that end, let $\overline{EP}(k' : k) : \mathcal{D}^{kmax} \rightarrow \mathbb{R}^d$, $(i, k) \in I_{samp}$, $k' \in K_{cs}(k)$,

$$\overline{EP}(k' : k)(S_i) = s_i^{(k)} + r_k(\mathcal{H}_W^k(S_i)) \frac{s_i^{(k)} - s_i^{(k')}}{u_{max}},$$

The reason for the use of $\mathcal{H}_W(S_i)$ will be made apparent in Section VII-B. For now, it is only important that $\mathcal{H}_W(S_i) \geq MC_i^k(S_i)$. The location $\overline{EP}(k' : k)(S_i)$ can be seen as the projection of $s_i^{(k')}$ onto the surface of $\mathcal{B}(s_i^{(k')}, r_k(\mathcal{H}_W^k(S_i)) \frac{u_{max} - s_i^{(k')}}{u_{max}})$. Then, we extend the predictive set by the extended constraint points as follows. Let $\overline{W}_i^{(k)} : \mathcal{D}^{kmax} \rightarrow \mathcal{P}(\mathbb{R}^d)$, $(i, k) \in I_{samp}$ be the constraint extended predictive set,

$$\overline{W}_i^{(k)}(S_i) = co \{W_i^{(k)}, \overline{EP}(k' : k)(S_i) | k' \in K_{cs}(k)\}.$$ A point $s \in \overline{W}_i^{(k)}(S_i)$ is active in centering if there is no neighborhood of s which might be added to $\overline{W}_i^{(k)}(S_i)$ without changing the circumcenter. Figure 1 shows an example of the extended predictive set.

![Fig. 1. A two-dimensional example of the extended center representation of a critical point of the constrained problem. The dashed circle is the circumsphere of $\overline{W}_i^{(k)}$, with circumcenter $s_i^{(k)}$. Note that $s_i^{(1)}$ is on the boundary of Γ^k formed by $s_i^{(k)}$, and thus $\overline{EP}(2:1)$ is active in centering.](image-url)
B. Multiple sample single agent constrained problem

Here we extend the constrained solution above to a single agent optimizing its own trajectory and characterize the optima of \mathcal{H}_{W_i} over the constraint set Ω_{Rg} in (8) in terms of centered sub-sequences. To ease the exposition, let $q^{(k:k')}: D^{k_{max}} \rightarrow \mathbb{R}_{\geq 0}$, $q^{(k:k')} (S_i) = \| s_i^{(k)} - s_i^{(k')} \|$. We use $\tilde{W}_i^{(k)} (S_i^k; K_C) = \{ \omega_i^{(k)} | \omega_i^{(k')} (S_i^k) | k' \in K_C (k) \cap K_C \}$ to denote constraint extended sets as calculated with a subset of the constraint points.

Lemma VII.3 (Centered sequences satisfy range constraint) Let $S_i \in D^{k_{max}}$, and let $K_C \subseteq \{1, \ldots, k_{max}\}$ define a sequence of consecutive samples from S_i such that each is at the circumcenter of the extended set formed by consecutive neighbors in the sequence, i.e.,

$\tilde{s}_i^{(k)} = CC (\tilde{W}_i^{(k)} (S_i^k; \{0 \cup K_C\})$, for all $k \in K_C$.

Then $d^{(k:k')} (S_i) \leq u_{\text{max}}$, for all $k \in K_C$ and $k' \in (\{0 \cup K_C\}) \cap K_C (k)$. We call such a sequence centered.

Define the constrained objective function for an agent,

$$\mathcal{H}_{\tilde{W}_i} (S_i) = \max_{k \in \{1, \ldots, k_{max}\}} \text{MCD}_{\tilde{W}_i}^{(k)} (S_i),$$

where $\text{MCD}_{\tilde{W}_i}^{(k)} (S_i) = \max_{x \in \tilde{W}_i^{(k)}} \delta_k (s, s^{(k)})$. Note that $\mathcal{H}_{\tilde{W}_i} (S_i) = \mathcal{H}_{W_i} (S_i)$. We next characterize the critical points of $\mathcal{H}_{\tilde{W}_i}$ in terms of a special case of centered sequences.

Lemma VII.4 (Maximal elements define sub-sequences within centered sequences) Let $K_C \subseteq \{1, \ldots, k_{max}\}$ define a centered sequence of samples in S_i with $S_i \in \Omega_{Rg}$, $\text{MCD}_{\tilde{W}_i}^{(k)} (s_i^{(k)}) = \mathcal{H}_{W_i} (S_i)$. Then there is a sub-sequence, $K_{MC} \subseteq K_C$ which is centered and such that every $k \in K_{MC}$ satisfies $\text{MCD}_{\tilde{W}_i}^{(k)} (s_i^{(k)}) = \mathcal{H}_{W_i} (S_i)$. We refer to a sequence such as K_{MC} as maximally centered.

Proposition VII.5 (Global minimizers of $\mathcal{H}_{\tilde{W}_i}$ on Ω_{Rg} contain maximally centered sequences) A trajectory $S_i \in \Omega_{Rg}$ is a critical point of $\mathcal{H}_{\tilde{W}_i}$ if it contains at least one maximally centered sequence of samples. Furthermore, any such critical point globally minimizes $\mathcal{H}_{\tilde{W}_i}$ on Ω_{Rg}.

C. Multiple agent constrained problem

Finally, we combine agent trajectories into a network trajectory to find the constrained optimizers of $\mathcal{H}_{\tilde{W}}$. First, define $\mathcal{H}_{\tilde{W}} : (D^{k_{max}})^n \rightarrow \mathbb{R}$ by

$$\mathcal{H}_{\tilde{W}} (S) = \max_{i \in \{1, \ldots, n\}} \mathcal{H}_{\tilde{W}_i} (S_i).$$

Note that $\mathcal{H}_{\tilde{W}} (S) = \mathcal{H}_{W} (S)$ for $S \in \Omega_{Rg}$. Next, we characterize the critical points of $\mathcal{H}_{\tilde{W}}$.

Proposition VII.6 (Global minima of $\mathcal{H}_{\tilde{W}}$ on Ω_{Rg} contain maximally centered sequences) A trajectory $S \in \Omega_{Rg}$ is a critical point of $\mathcal{H}_{\tilde{W}}$ if and only if there is at least one $i \in \text{argmax}_{i \in \{1, \ldots, n\}} \mathcal{H}_{\tilde{W}_i} (S_i)$ such that S_i contains at least one maximally centered sequence. Furthermore, any such critical point is a global minimum of $\mathcal{H}_{\tilde{W}}$ over Ω_{Rg}.

Proposition VII.7 (Range-constrained generalized multicircumcenter trajectory) Let $S = (s_1^1, \ldots, s_n^1) \in (D^{k_{max}})^n$ such that each S_i contains at least one maximally centered sequence with respect to the partition $\mathcal{W} = \mathcal{MC} (S)$. Then S is a local minimizer of \mathcal{H} over Ω_{Rg}. We call such a network trajectory a range-constrained generalized multicircumcenter trajectory. Furthermore, if $\text{I} (\mathcal{MC} (S)) = n + k_{max}$, then S is a global minimizer of \mathcal{H} over Ω_{Rg}.

The following results allows for partial optimization of trajectories which are already under way, based on minimizing the maximum error over the remainder of the experiment.

Proposition VII.8 (Partially fixed range-constrained generalized multicircumcenter trajectory) Let $k^* \in \{2, \ldots, k_{max}\}$, and assume that samples $\{1, \ldots, k^*-1\}$ have been taken (thus the locations are now fixed). Let $S = (s_1^1, \ldots, s_n^1) \in (D^{k_{max}})^n$ such that, for each $i \in \{1, \ldots, n\}$, $\exists K_i \subseteq \{k^*, \ldots, k_{max}\}$ which defines a maximal sequence of samples in S_i, with anchor point $p_i (k^* - 1)$. Then S is a local minimizer of the map $(s_1^{(k^*)}, \ldots, s_n^{(k^*)}) \mapsto \mathcal{H} (S)$ over $\Omega_{Rg}^{(k^*)}$. Furthermore, if $\text{I} (\mathcal{MC} (S)) = n + k_{max}$, then S is a global minimum of the constrained problem.

VIII. THE GENERALIZED MULTICIRCUMCENTER ALGORITHM

Given our discussion in the previous sections, here we synthesize coordination algorithms to find the optimal trajectories of the correlation disk-covering \mathcal{H} with and without range-constraints. Table I presents the Generalized Multicircumcenter Algorithm, based on the well-known Lloyd algorithm for data clustering, by which the network may find a minimizer of \mathcal{H} over $\Omega_{Rg}^{(k^*)}$ for some $k^* \in \{1, \ldots, k_{max}\}$. With slight adjustments, the same algorithm works for the unconstrained case. Figure 2 shows results of a simulation of the Generalized Multicircumcenter Algorithm, leaving out the initial anchor points to illustrate optimization over the set of all initial positions. The convergence properties of the algorithm are characterized in the following result.

Proposition VIII.1 The Generalized Multicircumcenter Algorithm is distributed over the partition $\mathcal{MC} (S^{(j)})$, meaning that at step $j + 1$, R_i need only communicate with R_i' for each $i' \in \{1, \ldots, n\}$ such that $\text{MC} (S^{(j)}) (S_i^{(j)})$ adjacent to $\text{MC} (S_i^{(j)}) (S_i^{(j)})$ for some k^*, k'. Furthermore, $S^{(j)} \in \Omega_{Rg}^{(k^*)}$, for all $j \in \mathbb{Z}_{\geq 0}$. As $j \rightarrow \infty$, $S^{(j)}$ approaches a $S^{(\infty)} \in (D^{k_{max}})^n$, and if $S^{(\infty)} \notin S_{\text{unique}}$, then $S^{(\infty)}$ is a minimizer of \mathcal{H} over $\Omega_{Rg}^{(k^*)}$.
Fig. 3. Sequential implementation of Generalized Multicircumcenter Algorithm with \(n = 8 \) robots, \(k_{\text{max}} = 5 \) steps, and Gaussian correlation. In (a), the trajectory is calculated from the initial anchor points. In (b), the first set of samples has been taken, and \(R_0 \) has dropped out to perform another task (for this simulation, \(R_0 \) remains stationary during this task). The plot shows the result of the Generalized Multicircumcenter Algorithm run by the remaining 7 agents over timesteps \(\{2, \ldots, k_{\text{max}}\} \). In (c), after the second set of samples have been taken, \(R_0 \) joins the network again. The figure shows the result of optimizing over steps \(\{3, \ldots, k_{\text{max}}\} \) with all agents. In all three plots, the anchor points and any past samples are shown as solid triangles, with solid lines connecting the initial anchors to the first samples, the optimized samples at steps \(\{k^*, \ldots, k_{\text{max}}\} \) are empty triangles, with dashed lines connecting each agent trajectory. The last sample location of the dropped agent is circled. The color convention is the same as in Figure 2.

We finish by discussing an adaptive approach to optimal path planning. Before moving to the \(k \)th sample, the network might receive new information from an external source (a change in the environment or network composition, or even human input). One or more of the agents may switch from sensing mode to actuation mode, or back. The Generalized Multicircumcenter Algorithm directly applies to such a situation, because it optimizes over only those sample locations not yet fixed. The network will arrive at a trajectory which minimizes the maximum error variance over all trajectories feasible to the network moving forward. Figure 3 depicts an illustrative example of this procedure.

IX. CONCLUSIONS

We have considered a robotic sensor network taking samples of a spatio-temporal process. The criteria for optimization has been the maximum error variance of the prediction made at the end of the experiment. Under the asymptotic regime of near-independence, we have shown that minimizing this error is equivalent to minimizing the correlation distance disk-covering function, thus allowing geometric solutions. We have introduced the maximal correlation partition and established its optimality properties with respect to the disk-covering function. We have introduced the novel notion of multicircumcenter trajectories and established their optimality for unconstrained and constrained versions of the disk-covering optimization problem. On the design front, we have synthesized distributed strategies that allow the network to calculate an optimal trajectory. Future work will include the study of more complex predictive regions and of alternative optimality criteria.

ACKNOWLEDGEMENTS

This work was partially supported by NSF CAREER award ECS-0546871 and NSF award CCF-0917166.

REFERENCES