Jorge Cortés

Professor





Structural characterization of oscillations in brain networks with rate dynamics
E. Nozari, R. Planas, J. Cortés
IEEE Transactions on Automatic Control, submitted


Abstract

Among the versatile forms of dynamical patterns of activity exhibited by the brain, oscillations are one of the most salient and extensively studied, yet are still far from being well understood. In this paper, we provide various structural characterizations of the existence of oscillatory behavior in neural networks using a classical neural mass model of mesoscale brain activity called the linear-threshold model. Exploiting the switched-affine nature of linear-threshold dynamics, we obtain various necessary and/or sufficient conditions for the existence of oscillations in (i) two-dimensional excitatory-inhibitory networks (E-I pairs), (ii) networks with one inhibitory but arbitrary number of excitatory nodes, (iii) purely inhibitory networks with an arbitrary number of nodes, and (iv) networks of E-I pairs. Throughout our treatment, and given the arbitrary dimensionality of the considered dynamics, we rely on the lack of stable equilibria as a system-based proxy for the existence of oscillations, and provide extensive numerical results to support its tight relationship with the more standard, signal-based definition of oscillations in computational neuroscience.

pdf

Mechanical and Aerospace Engineering, University of California, San Diego
9500 Gilman Dr, La Jolla, California, 92093-0411

Ph: 1-858-822-7930
Fax: 1-858-822-3107

cortes at ucsd.edu
Skype id: jorgilliyo