Frequency Response

We now know how to analyze and design ccts via s-domain methods which yield dynamical information

- Zero-state response
- Zero-input response
- Natural response
- Forced response

The responses are described by the exponential modes

The modes are determined by the poles of the response Laplace Transform

We next will look at describing cct performance via frequency response methods

This guides us in specifying the cct pole and zero positions
Transfer functions

Transfer function; measure input at one port, output at another

Transfer function = \frac{\text{zero - state response transform}}{\text{input signal transform}}

(I.e., what the circuit does to your input)
Sinusoidal Steady-State Response

Consider a stable transfer function with a sinusoidal input

\[x(t) = A \cos(\omega t + \phi) \quad X(s) = A \frac{s \cos(\phi) - \omega \sin(\phi)}{s^2 + \omega^2} \]

The Laplace Transform of the response has poles

- Where the natural cct modes lie
 - These are in the open left half plane \(\text{Re}(s) < 0 \)
- At the input modes \(s = +j\omega \) and \(s = -j\omega \)

Only the response due to the poles on the imaginary axis remains after a sufficiently long time

This is the sinusoidal steady-state response
Sinusoidal Steady-State Response contd

Input

\[x(t) = A \cos(\omega t + \phi) = A \cos \omega t \cos \phi - A \sin \omega t \sin \phi \]

Transform

\[X(s) = A \cos \phi \frac{s}{s^2 + \omega^2} - A \sin \phi \frac{\omega}{s^2 + \omega^2} \]

Response Transform

\[Y(s) = T(s)X(s) = \frac{k}{s - j\omega} + \frac{k^*}{s + j\omega} + \frac{k_1}{s - p_1} + \frac{k_2}{s - p_2} + ... + \frac{k_N}{s - p_N} \]

Response Signal

\[y(t) = k e^{j\omega t} + k^* e^{-j\omega t} + k_1 e^{p_1 t} + k_2 e^{p_2 t} + ... + k_N e^{p_N t} \]

forced response
natural response

Sinusoidal Steady State (SSS) Response

\[y_{SS}(t) = k e^{j\omega t} + k^* e^{-j\omega t} \]
Sinusoidal Steady-State Response contd

Calculating the SSS response to \(x(t) = A\cos(\omega t + \phi) \)

Residue calculation

\[
\begin{align*}
 k &= \lim_{s \to j\omega} \left[(s - j\omega)Y(s) \right] = \lim_{s \to j\omega} \left[(s - j\omega)T(s)X(s) \right] \\
 &= \lim_{s \to j\omega} \left[T(s)(s - j\omega)A \frac{s\cos\phi - \omega\sin\phi}{(s - j\omega)(s + j\omega)} \right] = T(j\omega)A \left[\frac{j\omega\cos\phi - \omega\sin\phi}{2j\omega} \right] \\
 &= \frac{1}{2} A e^{j\phi} T(j\omega) = \frac{1}{2} A |T(j\omega)| e^{j(\phi + \angle T(j\omega))}
\end{align*}
\]

Signal calculation

\[
\begin{align*}
 y_{ss}(t) &= ke^{j\omega t} + k^* e^{-j\omega t} \\
 &= |k|e^{j\angle k} e^{j\omega t} + |k| e^{-j\angle k} e^{-j\omega t} = 2 |k| \cos(\omega t + \angle k) \\
 y_{ss}(t) &= A |T(j\omega)| \cos(\omega t + \phi + \angle T(j\omega))
\end{align*}
\]
Sinusoidal Steady-State Response contd

Response to \(x(t) = A\cos(\omega t + \phi) \)

is \(y_{ss}(t) = A|T(j\omega)|\cos(\omega t + \phi + \angle T(j\omega)) \)

Output frequency = input frequency
Output amplitude = input amplitude \times |T(j\omega)|
Output phase = input phase + \angle T(j\omega)

The Frequency Response of the transfer function \(T(s) \)
is given by its evaluation as a function of a complex variable at \(s=j\omega \)

We speak of the amplitude response and of the phase response. They cannot independently be varied

\[|T(j\omega)| \quad \text{gain} \]
\[\angle T(j\omega) \quad \text{phase} \]
Example 11-13, T&R 5th ed, p 527

Find the steady state output for \(v_1(t) = A \cos(\omega t + \phi) \)

![Circuit Diagram]

Compute the s-domain transfer function \(T(s) \)

Voltage divider \(T(s) = \frac{R}{sL + R} \)

Compute the frequency response

\[
|T(j\omega)| = \frac{R}{\sqrt{R^2 + (\omega L)^2}}, \quad \angle T(j\omega) = -\tan^{-1}\left(\frac{\omega L}{R}\right)
\]

Compute the steady state output

\[
v_{2SS}(t) = \frac{AR}{\sqrt{R^2 + (\omega L)^2}} \cos\left[\omega t + \phi - \tan^{-1}\left(\frac{\omega L}{R}\right)\right]
\]

MAE140 Linear Circuits
Terminology for Frequency Response

Based on shape of gain function of frequency

Passband: range of frequencies with nearly constant gain

Stopband: range of frequency with significantly reduced gain

Cutoff frequency: frequency associated with transition between bands

\[|T(j\omega_c)| = \frac{1}{\sqrt{2}} T_{\text{max}} \]

Low-pass filter: passband plus stopband

High-pass filter: stopband plus passband

Bandpass filter: one passband with two adjacent stopbands

Bandstop filter: one stopband with two adjacent passbands
Terminology for Frequency Response

What kind of filter is this one?
Worked-out example

\[T(s) = \frac{K}{s + \alpha} \]

What is DC gain? What is \(\infty\)-freq gain? What is cutoff freq?

K, \(\alpha\) real, \(\alpha > 0\)

First compute gain and phase

\[|T(j\omega)| = \frac{|K|}{\sqrt{\omega^2 + \alpha^2}} \]

\[\angle T(j\omega) = \angle K - \operatorname{arctan}\left(\frac{\omega}{\alpha}\right) \]

DC gain

\[\lim_{\omega \to 0} |T(j\omega)| = \frac{|K|}{\alpha} \quad \lim_{\omega \to \infty} |T(j\omega)| = 0 \]

\(\infty\)-freq

Cutoff freq

\[|T(j\omega_c)| = \frac{1}{\sqrt{2}} T_{\text{max}} = \frac{1}{\sqrt{2}} \frac{|K|}{\alpha} \Rightarrow \omega_c = \alpha \]

MAE140 Linear Circuits
Frequency Response – Bode Diagrams

Log-log plot of mag(T), log-linear plot arg(T) versus ω

| T(jω) |dB = 20log_{10} |T(jω)|

Magnitude (dB)

Phase (deg)

passband stopband

cutoff freq

Frequency (rad/sec)
Matlab Commands for Bode Diagram

Specify component values

>> R=1000; L=0.01;

Set up transfer function

>> Z=tf(R,[L R])

Transfer function:

\[\frac{1000}{0.01s + 1000} \]

>> bode(Z)
Frequency Response Descriptors

Lowpass Filters

\[
[num, den] = \text{butter}(6, 1000, 's');
\]

\[
lpass = \text{tf}(num, den);
lpass
\]

Transfer function:

\[
\text{Transfer function:} \quad \frac{1 \times 10^{18}}{s^6 + 3864 s^5 + 7.464 \times 10^6 s^4 + 9.142 \times 10^9 s^3 + 7.464 \times 10^{12} s^2 + 3.864 \times 10^{15} s + 1 \times 10^{18}}
\]

\[
bode(lpass)
\]
High Pass Filters

[num, den] = butter(6, 2000, 'high', 's');
hpass = tf(num, den)

Transfer function:

\[
\frac{s^6}{s^6 + 7727 s^5 + 2.986e07 s^4 + 7.313e10 s^3 + 1.194e14 s^2 + 1.236e17 s + 6.4e19}
\]

bode(hpass)
Bandpass Filters

[num, den] = butter(6, [1000 2000], 's');
bpass = tf(num, den)

Transfer function:

\[
\begin{align*}
&1e18 s^6 + 3864 s^5 + 1.946e07 s^4 + 4.778e10 s^3 + 1.272e14 s^2 + 2.133e17 s^1 + 3.7e20 s^0 \\
&+ 4.265e23 s^5 + 5.087e26 s^4 + 3.822e29 s^3 + 3.114e32 s^2 + 1.236e35 s + 6.4e37
\end{align*}
\]

bode(bpass)
Bandstop Filters

\[[\text{num, den}] = \text{butter}(6, [1000 \ 2000], 'stop', 's'); \]
\[\text{bstop} = \text{tf}(\text{num, den}); \]

Transfer function:
\[\frac{s^{12} + 1.2e07 \ s^{10} + 6e13 \ s^8 + 1.6e20 \ s^6 + 2.4e26 \ s^4 + 1.92e32 \ s^2 + 6.4e37}{s^{12} + 3864 \ s^{11} + 1.946e07 \ s^{10} + 4.778e10 \ s^9 + 1.272e14 \ s^8 + 2.133e17 \ s^7 + 3.7e20 \ s^6 + 4.265e23 \ s^5 + 5.087e26 \ s^4 + 3.822e29 \ s^3 + 3.114e32 \ s^2 + 1.236e35 \ s + 6.4e37} \]

\[\text{bode(bstop)} \]